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a b s t r a c t

We investigate uncertainty guidance mechanisms to support proton therapy (PT) planning visual-
ization. Uncertainties in the PT workflow pose significant challenges for navigating treatment plan
data and selecting the most optimal plan among alternatives. Although guidance techniques have
not yet been applied to PT planning scenarios, they have successfully supported sense- and decision-
making processes in other contexts. We hypothesize that augmenting PT uncertainty visualization with
guidance may influence the intended users’ perceived confidence and provide new insights. To this
end, we follow an iterative co-design process with domain experts to develop a visualization dashboard
enhanced with distinct level-of-detail uncertainty guidance mechanisms. Our approach classifies
uncertainty guidance into two dimensions: degree of intrusiveness and detail-orientation. Our dashboard
supports the comparison of multiple treatment plans (i.e., nominal plans with their translational
variations) while accounting for multiple uncertainty factors. We subsequently evaluate the designed
and developed strategies by assessing perceived confidence and effectiveness during a sense- and
decision-making process. Our findings indicate that uncertainty guidance in PT planning visualization
does not necessarily impact the perceived confidence of the users in the process. Nonetheless,
it provides new insights and raises uncertainty awareness during treatment plan selection. This
observation was particularly evident for users with longer experience in PT planning.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Proton therapy (PT) is a standard radiation modality in cancer
reatment. It requires careful planning to ensure that a tumor will
e sufficiently irradiated while adjacent tissues are avoided as
uch as possible. The treatment plan is calculated in a dedicated

reatment planning software (TPS), which computes how the
herapy system will deliver the radiation dose to the patient.
s this is a lengthy process, it is usually limited to generating
couple of alternatives with additional positional (i.e., trans-

ational) variations. Deciding on an optimal plan is a complex
ndertaking with several uncertainty factors, which relate to the
hysics behind the calculations and the biological effects of the
ose on tissues.
Researchers and practitioners designing and selecting robust

T plans for patients depend on the available TPS to calculate the
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plan(s) and make appropriate therapy decisions. The TPS includes
mainly slice–dose overlay views (Fig. 1(a)) and an additional
plot, called dose volume histogram (DVH), that depicts radiation
dose administered to volume percentages of specific structures
(Fig. 1(b)). Beyond juxtaposition, the TPS views do not allow the
user to simultaneously compare and assess multiple plans. They
also do not support understanding the involved PT uncertainty
factors and how these might affect the treatment outcome. The
current workflow leaves a gap for a more efficient sense- and
decision-making process, exploiting the synergy between the hu-
man expertise of the researchers or practitioners in PT, and the
computational power of the TPS.

Guidance techniques [1,2] could leverage the synergy between
domain experts and their systems, but they have yet to be ex-
plored within the context of PT or other clinical applications.
In clinical applications (and thus also in PT), data exploration
through visual interfaces is often complex. There is still a signif-
icant lack of trust in visual analysis frameworks and confidence
n the outcomes [3]. It is reflected by the low adoption of vi-
ualization solutions in clinical workflows, which indicates that
he suitability of visualization frameworks for clinical decision-

aking scenarios is limited [3]. In PT, uncertainty adds to the
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Fig. 1. Conventional views in available treatment planning systems (TPS): (a)
lice–dose overlay views and (b) dose volume histogram (DVH), where brown
ndicates the brain stem (a structure at risk) and magenta indicates the tumor
arget. The line band corresponds to the plan’s robustness.

ense- and decision-making complexity [4]. Developing guidance
echniques for uncertainty within a PT planning visualization sys-
em is anticipated to provide researchers and practitioners with
comprehensive view of the planning robustness. Hence, we

im to provide an overview of the entire decision space, which
ncludes all involved uncertainties and their impact on the treat-
ent plan. Our approach is expected to improve the effectiveness
nd reproducibility of the sense- and decision-making processes
n PT planning.

The contribution of this work is the design, development, and
ssessment of a dashboard as a guided visual interface that en-
bles: (i) the effective comparison of PT plans and (ii) the analysis

of the impact of their respective uncertainties. As part of the
interface, we investigate and develop guidance mechanisms that
facilitate navigating through PT plans and their uncertainties in
a multi-level-of-detail manner, where both the degree of intru-
siveness and detail-orientation of the guidance can be tuned and
adapted to the needs of the user. Our proposed two-dimensional
guidance mechanism (i.e., intrusiveness and detail-orientation)
has not been addressed before, while guidance has yet to be
investigated extensively in the context of a clinical application.
To evaluate guidance in PT uncertainty visualization, we propose
a framework that focuses on the impact of the guidance on the
sense- and decision-making process.

2. Background

2.1. Clinical background

PT requires careful planning to account for several uncer-
tainty factors—from data acquisition to treatment planning and
radiation dose delivery. In the planning stage, researchers and
practitioners use dedicated TPS, such as Eclipse [5]. They calculate
possible treatment plans by deciding on characteristics of the
treatment, such as the number of beams, their directions, or
specific dose constraints to be fulfilled. Given the computational
complexity of the process, only a few (i.e., 2–3) nominal plans
167
are computed. Within the few nominal plans, practitioners also
consider several uncertainty factors in deciding which of the
plans is the best solution for a patient. Therefore, each treatment
plan alternative encompasses a large possible combination of
uncertainties [6]. Currently, some uncertainties are accounted for
during treatment planning through robust optimization.

Despite the significant effort in the visualization community
to formalize the definition of uncertainty [7,8], our field has yet
to adopt a standard definition. For radiotherapy, Raidou defines
uncertainty as ‘‘any variation in the dose planning outcome, which
is produced by an ad-hoc choice or a stochastic process at any
stage of the radiotherapy pipeline’’ [4]. This definition outlines
the challenging and multi-faceted nature of uncertainty in radio-
therapy (and, subsequently, in PT). In common practice, not all
sources of uncertainty are addressed at once. Several sources of
uncertainties are prioritized due to their high impact on deciding
the final treatment plan. For example, previous work focused
only on uncertainty due to anatomical variability [9,10]. Here,
we address other types of uncertainty—related to the underlying
physics and biological effects of the dose on tissue and their
subsequent side effects.

Set-up uncertainties are often investigated in the domain of
radiotherapy. They represent the possible deviations in patient
positioning on the treatment couch compared to the expected
position from which the plan is initially calculated [11]. These
deviations, in practice, reflect positional variations along the three
main anatomical axes of the patient. For example, for each nom-
inal plan, six additional variations along the ±x, ±y, and ±z
axes of the patient are considered. Additional uncertainties are
related to the relative biological effectiveness (RBE) [12], which is
an emerging uncertainty topic in PT that is not yet tackled in TPS.
Clinicians use a fixed RBE factor of 1.1 to account for the larger
effectiveness of proton- compared to the photon-based RT [13,
14]. However, several mathematical models exist that provide
a more accurate factor [15]. These calculations also encompass
another level of uncertainty with the α/β sensitivity variable per
structure, which is essential for the RBE value [16,17].

We schematically depict in Fig. 2 the whole process, which
results in several factors and alternatives for each nominal plan.
These need to be considered by clinical physicists to make an
informed and complete decision about an optimal plan to follow.
Currently, these alternatives are explored and analyzed manually
using slice–dose overlay views, DVH plots, or both (Fig. 1). This
solution does not offer a comprehensive view of the different PT
plan alternatives’ sense- and decision-making space. It also does
not support clinical physicists in their workflow of investigating
PT plan uncertainties to decide on a robust treatment strategy for
a given patient.

2.2. Important concepts and definitions

Here, we clarify essential concepts and terms in the paper:
Clinical Goals: Clinical guidelines provide a list of dose expo-

sure limits for each structure based on scientific evidence. This list
is used as a reference when physicians inspect dose exposure, and
domain experts refer to them as clinical goals. Clinical goals help
them identify a therapy decision that avoids unwanted damage
to structures.

Guidance: Guidance is ambiguously discussed in visualization
and visual analytics (VA), and many different definitions (and
interpretations thereof) exist. Guidance comes in many forms:
some are prominent (e.g., text popping up to provide sugges-
tions), and others are subtle (e.g., visual cues) [2]. In this work,
we adopt the definition of Ceneda et al. [18] that defines guidance
as ‘‘a computer-assisted process that aims to actively resolve a
knowledge gap encountered by users during an interactive visual
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Fig. 2. Schematic depiction of the uncertainties involved in deciding on an
optimal PT plan. For each nominal plan, set-up and RBE-related uncertainties
have to be accounted for.

analytics session’’. In our case, the computer-assisted process of
analyzing PT plans and their respective uncertainties is facilitated
by a two-dimensional mechanism, i.e., intrusiveness vs. detail-
orientation, which can be tuned and adapted to user’s needs. This
mechanism enables the adaptive use of (visual) cues derived from
the data and presented in our interactive visual system to bridge
the users’ knowledge gap and inform their analysis. We employ
guidance as a means to unveil the impact of uncertainties on the
decision-making space and to raise awareness about this impact.

Guidance Intrusiveness: By intrusiveness, we define the de-
gree to which guidance interjects a sense- and decision-making
process. It can be high if the guidance amends or supports existing
visual plots by, e.g., line-styling or low when a separate, auxiliary
view presents the guidance.

Guidance Detail-Orientation: By detail-orientation, we define
the detail level, or data resolution, at which guidance is applied.
In our case, it can be applied per voxel, per structure of interest,
or per slice—depending on the level where the analytical process
of the user is occurring.

Knowledge Gap: By knowledge gap, we define the quantifi-
able difference between the required knowledge to complete an
analysis task and the knowledge so far obtained by the user. A
gap may arise from different types of knowledge, such as domain
knowledge or VA tool knowledge [19]. In the context of our
work, the knowledge gap arises from lacking an overview on the
entire radiotherapy planning decision space, which is hindered by
multi-sourced PT plan uncertainties. Referring to the categoriza-
tion of Ceneda et al. [20], the type of our knowledge gap relates
to an unknown target and pertains to the data domain, as the
workflow revolves around understanding data uncertainties and
their impact on the simulated dose data. Based on discussions
with domain experts, this knowledge gap cannot only be iden-
tified in the interaction with the tool and during the analytical
process [20]—and even before the start of the analytical process.
By integrating guidance cues in our tool, we preemptively support
the users in their sense- and decision-making process and provide
them with a complete view of the information required to make
an informed decision on the optimal plan.
168
3. Related work

Guidance in Visualization—Ceneda et al. [20] describe guid-
nce methods in visualization. They characterize three aspects
o provide a systematic framework for developing guidance in
isualization systems: knowledge gap, input and output, and
uidance degree. Their framework gives a concise perspective
oncerning guidance in visualization. According to their under-
tanding, a guidance technique is only relevant in visualization if
specific knowledge gap is identified in the interaction with the
ool. This gap is bridged with methods that lead users through
he process. Guidance is ‘‘not merely an additional algorithm
hat computes results’’ . They conclude that there is a lack of
uidance techniques that accompany the user in the entire process.
n extension is proposed to understand the guidance approach’s
nput. They also claim the need for guidance techniques that
rovide multiple output forms.
To further clarify the concept of guidance, Ceneda et al. [1]

uggest a decision tree to determine whether a synergy between
umans and computers would provide a more satisfactory out-
ome. This decision mechanism on using guidance helps to think
bout the technique itself. However, the decision tree assumes
singular target per visualization system. In reality, the main
bjective of a visualization system is a consolidation of several
argets. An open question is whether a guidance technique should
e considered per target or system.
In follow-up work, Ceneda et al. [2] review guidance ap-

roaches currently popular in visualization. They investigate a
imension that helps to position guidance work. Our work is
ocated on the axis of system guidance that supports data ex-
loration and the verification and generation of new knowledge
bout the data. In the context of data uncertainty-related prob-
ems, an orienting guidance approach is preferable, i.e., one that
upports maintaining mental maps.

Sperrle et al. [21] examines a co-adaptive learning model
o expand on the mixed-initiative process model introduced by
eneda et al. [2]. The work examines how user and system knowl-
dge converge through a co-guidance mechanism to bridge the
nowledge gap. The co-adaptation aims ‘‘to reach a high degree of
achine automation’’ . Nonetheless, Ceneda et al. [18] empha-
ize that guidance intends to provide a suggestion rather than
‘close the knowledge gap automatically’’ . As the system reaches
he automation stage described in the co-adaptation model, the
utomated actions of the system cannot be classified as guid-
nce anymore. The co-adaptive model introduces an interesting
erspective to develop a dynamic guidance technique that learns
rom the analytical provenance.

Stoiber et al. [22] distinguish guidance techniques from on-
oarding. An intrusive form of step-by-step guidance described
n Stoiber’s work would be resisted in PT planning. In their
efinition of guidance, an ambiguity persists on what quali-
ies as guidance in visualization. Their definition differs from
eneda et al.’s [18] emphasis that guidance does not compute
esults; instead, it is ‘‘a catalyst for human–computer interaction’’
Nonetheless, Stoiber et al. [22,23] propose several aspects that
ould be employed in developing guidance, such as the questions
of where and how to provide guidance.

Several works also look into applications where the use of
a sensitivity value is disputed. In exploring the finance domain,
Torsney-Weir et al. [24] enabled users to manipulate a sensitivity
variable while exploring the data. This feature led to an increase
in trust in the visualization. They highlight in their work the
distraction possibilities in case of intrusive features. Furthermore,
expert users might want to ignore the feature. A complementary
finding by Bögl et al. [25] suggests that domain experts tend to
accept a novel visualization if it relies heavily on conventional
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isual encodings. This conclusion is especially applicable in the
edical field and PT planning as well [6], where several models
re used to calculate dose uncertainties.
In an earlier paper, Torsney-Weir et al. [26] outline decision-

aking strategies in uncertainty visualization. The six strategies
rovide a reasonable basis for considering visual encoding and
esign decisions. The study of Torsney-Weir et al. identifies the
exicographic decision-making strategy as being very popular
n the visualization community. It largely corresponds to the
ecision-making process involved in PT planning visualization.
he clinician decides to prioritize certain aspects to make the final
reatment decision [27]. For example, in exploring radiation doses
o a brain tumor, the clinician prioritizes whether structures
round the brain stem and other regions of interest (ROI) are
pared or harmed.
Guidance for Uncertainty Visualization—Uncertainty visual-

zations for biomedical applications follow the general trends in
he parent field of uncertainty visualization, despite their addi-
ional specific characteristics [8]. Approaches to visualize uncer-
ain data from environmental, ecology, and urban studies [28–32]
ould also be transferred to biomedical applications. We refer to
he survey of Schlachter et al. about existing work in uncertainty
isualization for the radiotherapy domain [27]. It also demon-
trated that an explicit and thorough investigation of uncertainty
uidance principles in PT planning visualization is still missing.
evertheless, there is work on guidance for uncertainty visual-
zation in other contexts, which we consider relevant for our
ork.
Belyakov et al. [33] propose a guidance approach to address

ncertainty in spatial data analysis in cartography. They study
heir visual encoding approaches in terms of context in their
work. Given the data and uncertainty characteristics, such an
approach could be translated from cartography to the uncertainty
domain in PT visualization. The basis of PT planning visualization
is mapping dose data to medical images. This resembles the use
of scalar and spatial data in cartography.

Floricel et al. [34] also rely on context to decide on the visual
encodings employed in their system THALIS. They position their
work on the axis of knowledge discovery. Their visualizations aim
to minimize uncertainties in the symptom data of cancer patients.
THALIS does not qualify as a guidance technique based on the
definition in our paper. It utilizes machine learning to present
results rather than guide users through decision-making. How-
ever, the visual encoding used to reduce the data complexity and
uncertainty is transferable to the field of guidance for uncertainty
scenarios [35].

Finally, Kamal et al. [36] surveyed visualization approaches to
represent uncertainty in data. They conclude that a comparative
visualization approach is required to represent uncertainty ac-
curately. Moreover, they suggest giving users control over when
and which uncertainties are encoded, hinting at level-of-detail
approaches.

The work we surveyed highlights a gap in the literature re-
garding visualization techniques that incorporate multiple levels
of uncertainty in their visual interfaces. Despite efforts to char-
acterize guidance techniques, systematic approaches still need
to be included regarding the development and application of
uncertainty guidance mechanisms. This is also the case for the
medical visualization domain. Moreover, the literature does not
present concrete evaluation methodologies that measure user
confidence—a critical aim in tackling uncertainties. Our work

addresses this gap in the state of the art. S

169
4. Task analysis and research questions

After several rounds of discussions among the co-authors of
this paper (visualization researchers and medical physicists), we
jointly agreed that the current PT workflow is missing two main
aspects. First, medical physicists need visualization mechanisms
that support them in comparing and assessing plan alternatives
resulting from the process described in Section 2 and depicted
in Fig. 2 (T1). Second, the workflow should enable the guided
xploration of the impact of different uncertainty types (set-up and
BE) on the final decision about the optimal plan (T2). Making
ense of the entire decision space is a complex process requiring
complete awareness of many uncertainty sources. To unveil
ow the decision space is affected by uncertainties, guidance is
equired [19].

Clinical applications often face the problem of adoptability.
hey might be using very complex and unfamiliar visual repre-
entations (or interfaces, in general), trying to heavily alter the
xisting workflow of the domain experts, or both. To counteract
his, we provide only simple views that are already familiar to
he intended users, and we do not enforce guidance through the
nalytical workflow.
As our co-designing medical physicists remarked, the work-

low should be tunable to their analytical needs. The users should
e able to decide the degree of aid the system should provide
hen comparing and assessing plan alternatives and their un-
ertainties. Tunability, i.e., control, is an important requirement
or clinical users that empowers them to reach a confident deci-
ion on the perceived optimal therapy plan. We use guidance to
nveil the impact of uncertainties on the decision-making space
nd raise awareness about this impact. Nevertheless, the final
ecision has to be made by the domain expert in a way that is
onsistent and compatible with the current workflow.
We investigate the following research questions:

Q1 How can guidance assist PT plan comparison (T1) and reduce
the uncertainty complexity (T2)?

Q2 Which guidance methods can improve the confidence of
users in PT plan sense- and decision-making processes?

Q3 How can we validate guidance techniques designed for un-
certainty PT visualization?

To address RQ1 and RQ2, we design a guidance dashboard
pecific to the scenario of PT uncertainty visualization. It supports
he exploration and analysis of multiple PT plans (T1) along
ith their uncertainties and their impact on the decision-making
rocess (T2). Only simple representations are employed to sup-
ort adoptability. Specifically for RQ2, we investigate different
evels of intrusiveness and detail in developing and applying our
uidance mechanisms. This approach is necessary to provide the
esired level of control. Finally, the value of our adopted methods
s measured through a domain-expert user evaluation. It builds
pon available approaches to account for the guidance impact on
he sense- and decision-making process RQ3.

. Design and implementation

Our designed and implemented dashboard supports compar-
ng PT plan alternatives. The guided navigation of their uncertain-
ies uses a multi-level-of-detail approach with different degrees
f intrusiveness. The dashboard is developed in a flexible and
xtensible PyCharm environment using Python and Dash. It is
he result of an iterative co-design process between visualiza-
ion researchers and clinical physicists, as further discussed in

ection 6.1.

https://www.python.org
https://dash.plotly.com
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.1. Patient data and PT uncertainties

We received anonymized planning Computed Tomography
pCT) data with two sets of PT plans from pediatric brain tumor
atients. The 3D plans were calculated for illustrative purposes
n the context of this work. These included two nominal plans
nd six different set-up uncertainty scenarios for each nominal
lan. In total, we have 14 plan alternatives per patient resulting
rom the set-up uncertainties. The alternatives are all 3D volumes,
here the scalars encode radiation dose in Gray (Gy).
We obtained the respective linear energy transfer (LET) distri-

utions for each of the plans. These are also 3D scalar volumes,
here a scalar encodes the amount of energy an ionizing particle
ransfers to the material through a unit distance traversal in
eV/µm. The data represent the energy deposition density along
he depth of the beam, which is an essential variable in estimating
amages caused by the radiation dose to the tissues [37]. The LET
s also an input parameter for the different RBE models proposed
n the literature.

Moreover, the datasets included a delineation of a total of
3 structures located around/close to the tumor, such as the
rain stem or the temporal lobe, and target delineations. We
lso received a list of maximum-dose clinical goals (maximum
adiation dose) as input to inform guidance in calculating the
VHs for the different structures.
In addition to the set-up uncertainties, we deal with RBE-

elated uncertainties, which need to be calculated in real time and
ntegrated into our dashboard. We calculate the RBE values using
he LET distribution and eight known models in the field [15].
hus, we obtain eight RBE calculations for each plan, which may
iffer from each other. Additionally, we use a default structure
ensitivity value α/β of 2.0 Gy, but the interface enables the user
o control these values in real time while comparing PT plans.
his functionality enables the user to unravel the RBE uncertainty
urther.

.2. Uncertainty guidance design

We propose a two-dimensional formulation of uncertainty guid-
ance, which targets complex scenarios where a multi-level-of-
detail – yet controlled – exploration of uncertainties is required.
Table 1 shows an overview and categorization of the guidance
mechanisms developed as part of our dashboard and further
discussed in Section 5.3.

The first dimension represents intrusiveness. As discussed in
Section 2.2, low-degree intrusiveness does not ‘‘intrude’’ the user’s
analytical visual space; instead, it employs on-demand, auxiliary
solutions. High-degree intrusiveness becomes intrinsic to the user’s
analytical visual space by altering it. Our definition indicates that
highly intrusive guidance is displayed within the user’s direct
perceptual focus or is integrated into conventional views, such
as new encodings within the slice–dose overlay or the DVH view.
Oppositely, less intrusive guidance comes within separate, sup-
plementary views that can be added on-demand. This salient
encoding is intended to draw the user’s attention proactively.
Intrusiveness relates – but is not entirely equivalent – to the
controllability characteristic of guidance, as discussed by Ceneda
et al. [19]. The system allows the user to control the guidance
degree and, subsequently, the intrusiveness degree to comply
with their analytical process. This feature also resembles the
refine stage, as described by Sperrle et al. [21]. As a difference, our
approach does not include automated control; instead, it leaves
tuning to the user.

The second dimension represents detail-orientation, which re-
lates to the level of detail (i.e., voxel, structure, or slice level) at
which the guidance works. At each of these levels, we investigate
170
and compare the impact of uncertainties on the patient plan.
The structure level is the most common one, as planning often
considers entire organs [6]. The voxel level provides more granu-
lar detail on sub-parts of the organ where significant differences
might occur. The slice level is an aggregation essential for effi-
ciently comparing doses and identifying issues at very impactful
slice ranges, e.g., close to tumors or structures.

In designing our guidance mechanisms, we consider additional
points. First, we integrate uncertainty guidance with anatomical
and DVH plots, maintaining conventions in the PT domain to
promote adoptability. Second, we employ the guidance plots as
abstract visual cues. We abstract the plots if low-level details
are not meaningful for the analytical process of the user. For
example, if we are interested in a high-level comparison of two or
more dose distributions, we largely omit axis labels and ticks as
unnecessary detail. This way, we accommodate many plans and
uncertainty factors in an abstract comparative view to provide
indications of plan differences that guide the user through the
decision-making process. Finally, our guidance techniques en-
compass visual organization techniques. Thus, we do not introduce
any new plots. We only rearrange and regroup existing ones.
The following subsection discusses how we implemented the
guidance-enriched PT planning dashboard.

5.3. Dashboard implementation

We followed a detailed-context-overview approach while build
ing our dashboard [38]. The final dashboard evolved through
an iterative co-design process (further described in Section 6).
It resulted in the inclusion of different views that enables the
users to explore and compare details and summaries of plan-dose
overlays with their uncertainties. The dashboard also provides
several control features to enable dynamic guidance based on
user interaction.

As input, the dashboard requires DICOM (Digital Imaging and
Communications in Medicine) data that comprise a patient’s pCT
scan slices, information about the structures of interest (delin-
eations and dose-limitation clinical goals), and the respective
dose and LET distributions. As output, the dashboard displays
a comparative view of different PT plans and their uncertain-
ties (RBE and set-up). Concerning the available knowledge, the
domain experts are knowledgeable and experienced in reading
and comprehending dose/LET plan visualizations overlaid on pCT
scans together with structure contours and DVH plots (Fig. 1).
The domain experts are also knowledgeable about the nature
of uncertainties. However, they could benefit from visualizations
that support them in understanding and comparing uncertainties
from different plan alternatives (T1,2). In this case, conventional
plan visualizations and DVH plots are insufficient, as discussed in
Section 2. This is, thus, the knowledge gap we attempt to bridge.

Slice–Dose Overlay View—Fig. 3 includes the typical slice–
ose overlay view on the pCT slices along the three main anatom-
cal axes for two plans. This slice-based view is conventionally
sed in PT to represent the dose distribution on the patient’s
natomy at each voxel position [27]. In the background, the pCT
can is presented using a grayscale, and the dose- (or LET-) plan
s overlaid using a rainbow color map. Additionally, structure
ontours are overlaid with distinct colors. The rainbow color map
nd the contour colors are retained to follow standard practices
nd conventions in PT visualization [27]. This view supports
1. To optimize space on the interface for the comparison, we
osition the three anatomical planes vertically, as opposed to the
onfiguration in Fig. 1(a). A 3D view was not deemed necessary
y our collaborators.
To compare two plans, the domain experts currently must

xchange the view by moving back and forth between plans.
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Table 1
Guidance overview and categorization using two dimensions (intrusiveness and detail-orientation) and employed in our dashboard to compare the available PT plans
and navigate through their respective uncertainties.

Detail-orientation

Per voxel Per structure Per slice

Intrusiveness Low Slice–dose overlay (Fig. 3) &
Explicit comparison view
(Fig. 4)

RBE uncertainty violin plot (Fig. 6) Uncertainty indicator (Fig. 8)

High On-demand uncertainty
distribution plot (Fig. 5)

Targeted stylization of DVH lines for
structures of interest (Fig. 7)

Re-adjustment of the presented
dose based on selected RBE
models
v
T

Fig. 3. pCT slices overlaid with dose distributions and structure contours from
two plans (in the two columns) on the three main anatomical planes (in the
three rows) of the patient for one slice (Slice 153). The contour colors follow
the conventions in the clinical environment.

Plumlee and Ware [39] suggest multiple windows to compare
complex data that the users cannot easily hold in their visual
working memory. In our dashboard, we adopt a juxtaposition
approach where the two plans are depicted side-by-side. This
supports plan comparison through a simultaneous and linked
exploration of the slices. It is a low-intrusiveness and per-voxel
guidance mechanism, which allows a one-by-one comparison of
two dose- (or LET-) plans for one patient at a voxel level. Super-
position is not an adequate choice, as the underlying planning CT
scan has to be retained for anatomical context.

Explicit Comparison View—For a more explicit comparison of
two plans, we use the view shown in Fig. 4. Explicitly encoding
of computed difference provides better precision of the image
difference [40], which supports the comprehensibility demand of
a guidance encoding. The view encodes the difference between
the primary (top) plane views in Fig. 3. It includes the typical
anatomical slice with a semitransparent dose overlay that results
from the absolute difference between the dose or LET values of
the first and the second plan. A calculated value may be positive
or negative, based on which plan receives a higher dose at the
specific voxel position. The difference is encoded in a red-to-

blue diverging color scale. Red represents a higher dose value
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Fig. 4. The explicit comparison view encodes the differences between the two
plans of Fig. 3 using a divergent red-to-blue colormap to indicate different
doses between the two alternatives at each voxel. The contour colors follow
the conventions in the clinical environment.

for the first plan, and blue represents a higher dose value for
the second at a given voxel position. The view can addition-
ally include structure delineations, as used conventionally in the
domain of PT planning. It implements a low-intrusiveness and per-
oxel guidance, which supplements the slice–dose overlay view.
he explicit comparison view supports T1.
Uncertainty Distribution Plot—The user can hover over a

voxel position in an ROI that recieves a radiation dose (e.g., a
voxel within the brain stem). In this case, a plot of the dose distri-
butions of the alternative plans at that specific voxel with accom-
panying uncertainties will appear. Several comparison techniques
are possible. Due to the high-intrusiveness nature of this encod-
ing, we use superposition to provide a direct visualization of the
trade-off between the two plans [40].

The plot compares at a high level and highlights differences in
the distribution of all possible dose values at a voxel. It is based
on all different RBE and set-up uncertainty factors for each plan
and structure (Fig. 5), and supporting T2. We depict each plan
with a distinct color (red or blue, following the explicit com-
parison convention). The rugplot [41] under the horizontal axis
further enhances this representation by visualizing the marginal
distribution of the data as marks along the axis. Rugplots are
often coupled with distribution plots to enhance the view on the
raw data used in plotting the distribution. This guidance mecha-
nism provides users with a many-to-many robustness indication
in comparing two plans at a voxel level with a high degree of
intrusiveness.

RBE Uncertainty Violin Plot—The view in Fig. 6 provides a
guidance of low degree of intrusiveness to the user on the robust-
ness of plans. Robustness is based on the uncertainty distribution
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Fig. 5. The distribution plot pops up when hovering over a voxel position
ithin a delineated structure receiving a radiation dose. It reveals the high-

evel uncertainty distributions of the two plans indicated with the two different
olors. The rugplot, i.e., the marks on the horizontal axis, further enhance the
bstract comparative representation.

ntroduced by the calculated RBE factor of each structure of interest
T2). We represent the RBE uncertainty distribution for each
tructure of interest with a split violin plot, as seen in Fig. 6. It
isplays at a high level the distribution of the possible values
ased on calculating RBE at each scenario of the plan with each
f the chosen calculation model(s) and other parametrizations for
he structures of interest.

We considered alternatives like common box plots or sparse
epresentations, such as those proposed by Wentzel et al. [42].
lthough box plots might be more familiar to domain experts,
iolin plots are advantageous for showing the entire data distri-
ution [43]. They also facilitate the identification of differences
cross distributions. This characteristic enables the users to de-
ect marginal trade-offs between the compared plans, which is
rucial in our scenario. The user can zoom into areas of inter-
st. Additional statistical annotations are provided on-demand to
upport the comparison of the two distributions—showing also
xact numerical values. Eight models are used to calculate the
BE factors from each set-up scenario at each voxel position (in
otal, 56 different alternatives) for each structure and both plans.
n Fig. 6, a subset thereof is shown.

Targeted Stylization of Dose Volume Histogram (DVH) Li-
es—The DVH plot is a typical depiction in the RT domain that
isplays the distribution of the dose over volume percentages of
tructures (see Fig. 1(b)). The distribution of dose values to vol-
me percentages is calculated from the DICOM data files, which
ontain the delineations of the structures of interest. In the DVH
lot, users can inspect the dose or LET volume distribution. DVH
lots accommodate a many-to-many per-structure comparison
T1,2). Different plans and uncertainty factors can be computed
nd plotted with color coding and different line styles. In Fig. 7,
e illustrate two plans in the same DVH plot with several struc-
ures of interest. The user selects and deselects structures for
ach plan through the active legend. Line stylization supports
n intrusive guiding strategy. A distribution line is drawn with a

larger width if the corresponding structure received a maximum
dose that exceeds the clinical goals. In Fig. 7, this occurs for the
temporal lobes in plans A and B. Adjusting the line width provides
a more expressive visual guidance cue, given the lightness of the
conventional colors used to represent the structures. A less intru-
sive mechanism may involve uncertainty bands [44], where the
per-structure set-up uncertainty is displayed as a band around
the line.

Uncertainty Indicator—A heatmap plot summarizes the plan

obustness per slice, i.e., which plan has less uncertainty for each

172
Fig. 6. Comparative uncertainty distribution of possible RBE factors for the
structures of interest. The two plans are shown with two distinct colors. The
RBE uncertainty calculations include many factors, such as different RBE models
and structure sensitivities (α/β ratio). When hovering, the user is provided with
dditional annotations to support the comparison. The calculations have been
one for six structures of interest.

Fig. 7. The Dose Volume Histogram (DVH) for the structures involved in two
plans (plan A indicated with dashed lines and plan B with dotted lines). Line
stylization guides the user in identifying structures at risk (encoded by the
increased line width, e.g., for the temporal lobes in plans A and B). The colors
have been selected based on TPS conventions.

slice. This view supports T2. We use a grayscale heatmap to avoid
user confusion, given that the dashboard already employs other
color encodings dictated by field conventions.

We calculate the average dose exposure and standard de-
viation for each slice, which resulted from the different RBE
calculation models. The standard deviation σ indicates the vari-
ability in the uncertainties throughout all possible alternatives.
σ is encoded in a grayscale where dark gray indicates a high σ ,
i.e., a slice with high uncertainty. An example of the uncertainty
indicator view is shown in Fig. 8, juxtaposed are two plans and
the different slices of the volumes. In this example, slices beyond
number 230 have high σ s, i.e., uncertainty, in plan A and low σ s
in plan B. Brushing and linking allow the user to select a particular
slice by directly clicking on the uncertainty indicator to inves-
tigate the slice further. The view integrates a low-intrusiveness
guidance to support uncertainty plan comparison at a slice level.

Re-adjustment of the Presented Dose based on Selected
RBE Models—The user can select which models to include in
calculating the average RBE factor per voxel. It is done through
several controls, further described below. Changing the model
will trigger a real-time recalculation and adjustment of the views
affected by changes in the RBE computation. It can be experienced
as a high-intrusiveness solution, mainly applicable to slice-based
exploration and analysis. The re-adjustment mechanism supports
T1 and T2.
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Fig. 8. The uncertainty indicator view provides a per-slice indication of the
ncertainty for two plans and all slices. A darker gray value indicates a higher
, i.e., higher uncertainty, in the given slice.

Controls—The dashboard is supported through several con-
rols that accompany the guidance strategies. Some controls are
hared between views, and others are restricted to an individual
iew. In total, the dashboard includes five controls, one for: ma-
ipulating the slice-based view, the inclusion/exclusion of struc-
ures of interest, setting up the clinical goals and sensitivity
alue for each structure (Fig. 9(a)), exchanging the RBE models
nd set-up scenarios (Fig. 9(b)), selecting the level of guidance
ntrusiveness that the user prefers (Fig. 9(c)).

Making a selection through one of the controls has a linked
mpact on one or more views of the dashboard. For example,
he controls of Fig. 9(a) provide an input mechanism for the
ser to include or exclude structures and set their sensitivity
alues and clinical goals. Modifications directly impact dose cal-
ulation, which is then reflected on the slice–dose overlay view,
he explicit comparison view, and, subsequently, on all the other
iews of the dashboard. Similarly, the controls of Fig. 9(b) concern
he inclusion of different RBE uncertainty sources and set-up
ncertainties, affecting all possible dashboard views.
Finally, the slider in Fig. 9(c) controls the degree of guidance

ntrusiveness in the dashboard views. The user can decide how
ntrusive the uncertainty guidance should be in her sense- and
ecision-making process. The control starts from disabled guid-
nce, where the conventional slice-based views in Fig. 3 and the
VH plot in Fig. 7 are presented. In the minimal and intermediate
egrees of intrusiveness, low-intrusive guidance is added to the
nterface. In the former, the explicit comparison view (Fig. 4) is
ncluded, and in the latter, the RBE uncertainty violin plot (Fig. 6)
nd uncertainty indicator (Fig. 8) are added. The full guidance
ode includes the intrusive guidance that styles lines in the DVH
lot (Fig. 7) and the uncertainty distribution plot on slice pixel
overing (Fig. 3). It also presents the RBE calculation controls in
ig. 9(a) and (b).

.4. Usage scenario

In this section, we present a usage scenario to showcase the
ull functionality of our dashboard. We expect the users to start
heir navigation with the lowest degree of guidance, as this coin-
ides with current practices. Initially, the slider under the panels
s used to browse the linked anatomical slices in Fig. 3. The users
croll through the data until they reach a slice that displays the
egion(s) of interest (ROI). For example, in Fig. 3, these could
e the temporal lobes (indicated in pink and magenta), brain
tem (indicated in red), and tumor volume (indicated in green).
hey can, subsequently, add more guidance and consult with
he explicit comparison view in Fig. 4. Here, they can identify
significant difference in dose radiation in specific ROIs (T1),

.e., the posterior part of the brain receives a higher radiation
ose with plan B (indicated by the blue color). In Fig. 9(a), the
sers can deselect the contours of the least important regions.
overing over a structure allows them to explore the uncertainty
n the voxel values, e.g., in Fig. 5, which shows a shift between
he two plan distributions (T2). To receive a more comprehensive

icture, they can change the displayed data or select a higher dose
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Fig. 9. Three of the five controls accompanying the guidance mechanisms of our
dashboard: (a) provides a check-list of the structures of interest and sliders for
setting their clinical goals and sensitivity values, (b) provides a check-list of the
included RBE models, a drop-down menu to choose plans for comparison, and
a slider for selecting set-up uncertainty scenarios, and (c) provides an interface
to select the level of guidance intrusiveness.

value range to display. Users inspect the plot in Fig. 8 to identify
particular slices where a significant uncertainty variance occurs.
In this example, they can select slice 138, where plan A exhibits
a significant uncertainty variance indicated with a darker color.
Slice 138 is also depicted in Fig. 4, where a difference in dose is
noticeable.

To complement their findings, the users can opt for the high-
est degree of guidance and request to additionally explore the
DVH plot in Fig. 7. In this example, the increased line thickness
indicates structures that may be at risk (T1,2). For instance, the
right temporal lobe indicated with the dashed, thick, magenta line
might be a structure at risk both in plans A and B. In contrast to
this, the retina (light pink line) is not a structure at risk in either
of the two plans. The users can then customize the clinical goal
for an interesting structure at risk and deselect the rest. They
navigate the differences between the dose distributions in the
structure in both plans using the plot shown in Fig. 5. Here, the
two distributions differ by a shift, indicating that plan B adminis-
ters a higher radiation dose overall. To get a clearer picture of the
plan robustness at a structure level, users can further explore the
violin plots in Fig. 6. The plots may indicate significant differences
between the plans for each of the structures. In this example, the
differences are slight, as the two sides of the violin plot are almost
identical. Finally, users can also customize the sensitivity values
and RBE calculation models in Fig. 9(a) and (b), respectively, and
include the sensitivity uncertainties in the analysis. Now, users
can make decisions relying on a high or low degree of guidance
intrusiveness in our tool.
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Table 2
Domain experts participating in the evaluation sessions and their experience (in
years) in RT research and practice.

Occupation Research years Practice years

P1 Medical Physicist 25 5
P2 PostDoc Researcher 5 0
P3 Medical Physicist 19 24
P4 PhD Student 1 0
P5 Medical Doctor 6 3
P6 Medical Physicist 18 30

Table 3
Participation of domain experts in the different stages of the evaluation
(formative sessions vs. user evaluation).

Evaluation stage

Formative sessions User evaluation

1 2 3

P1 ✓ ✓ ✓

P2 ✓ ✓ ✓ ✓

P3 ✓ ✓

P4 ✓

P5 ✓

P6 ✓

6. Evaluation and results

We followed an iterative co-design process, where the views
nd user interactions discussed in Section 5 were developed in
ight collaboration with domain experts. This approach has facil-
tated understanding problems in the PT planning domain [45].
he iterative design included three formative sessions to inform
ur design decisions (Section 6.1). After the finalization of the de-
ign, we conducted a user evaluation (Section 6.2). The aim was to
valuate whether the dashboard, with its guidance mechanisms
t different degrees of intrusiveness, influences the perceived
onfidence and supports the users in their sense- and decision-
aking process. We included in total six domain experts (Ta-
le 2) throughout the formative sessions and the user evaluation
Table 3).

.1. Formative evaluation

We conducted three formative evaluation sessions to inform
ur design decisions. As seen in Table 3, P1 and P2 were involved
n the entire co-design process. They initiated this project by
roviding data, initial information regarding current practices and
he clinical workflow, as well as ideas for improving the current
ense- and decision-making process.
The first formative session was conducted together with P1, P2,

nd P3 in a joint session. We discussed in this session a low-
idelity prototype sketch (Fig. 10(a)) to elaborate further on how
he users imagine the design of the dashboard. We discussed
hich tasks users would like to be able to perform and how their
urrent workflow could be improved. We also dealt with visual cues
and how we could design them better to ensure compliance with
field conventions. P1 and P2 highlighted the unresolved visual-
ization of uncertainties in the process as their current knowledge
gap. Presently, the field of PT is discussing the possibility to select
one or two RBE calculation models instead of the 1.1 RBE factor,
which is the current clinical default value. After this session, we
improved the comparison encoding in the RBE uncertainty violin
plot based on discussions with the expert collaborators. We also
condensed the slice views to provide a permanent display of the
three plane views—axial, sagittal, and coronal. Moreover, we in-
cluded domain-familiar visualizations, i.e., the DVH plot and slice
views. Finally, we added controls to enable user customization
174
Fig. 10. The evolution of our dashboard through the three formative evaluation
sessions. (a) Low-fidelity prototype used in the first session. (b) Interactive
improved prototype used in the second session. (c) Final dashboard employed
in the user evaluation.

and a heatmap plot to indicate plan robustness. It resulted in the
second design (Fig. 10(b)).

The second formative session was conducted individually with
P1 and P2 to discuss the second design iteration. This session
was targeted toward concretizing the design of the individual views.
We started by discussing the views and functionalities of the
dashboard. Then, P1 and P2 obtained remote control and freely
explored the dashboard. We received valuable feedback regarding
functionality and visual cues to inform our third design iteration.
After this session, we changed the parallel coordinates plot to a
violin plot to represent more accurately the RBE uncertainty. We
rearranged the views based on feedback about the anticipated
analysis process. Furthermore, we made the slice views larger
and permanently displayed the three slice views of both plans
in a juxtaposed manner to better support comparisons. Finally,
we redesigned the heatmap plot into an aggregated version. It
resulted in the third design (Fig. 10(c)).

In the third formative session, we discussed the improved it-
eration of our dashboard. The purpose of this session was to
receive final feedback from both co-designers before putting the
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Table 4
The 7-point Likert scale questionnaire of the ICE+SUS (inspired by previous works [46,47]), completed by the study
participants.
dashboard out for the main user evaluation with a larger group,
which is discussed in Section 6.2. As illustrated in Fig. 10, the
dashboard evolved through several stages of an iterative process,
where together with domain experts we identified design choices
appropriate to fulfill their tasks. Some views were included in
the first two versions of the dashboard (e.g., parallel coordinates
to show uncertainties, or different comparative views), but did
not make it to the final dashboard, as they were not considered
effective or insightful enough.

6.2. User evaluation

User Evaluation Design—In our study, we evaluate the impact
of guidance techniques on the sense- and decision-making pro-
cess. We also assess the potential of the uncertainty visualization
approaches in reducing the perceived complexity in the calcu-
lated PT plans. Specifically, we aimed to answer the following
questions:

EQ1 How does the user employ the dashboard with regard to the
given uncertainty guidance mechanisms at different levels of
intrusiveness (low vs. high)?

EQ2 How does the user employ the dashboard with regard to
the given encodings at different detail-orientations (voxel,
structure, and slice)?

To answer the questions, the user evaluation design was in-
formed by the taxonomy of scenarios presented by Lam et al. [48].
We evaluate first the visual data analysis and reasoning (VDAR)
scenario. The study participants explore real-patient data in a
controlled environment while we observe their behavior in em-
ploying the dashboard. Moreover, we wanted to assess how the
guidance mechanisms affected user performance (UP) in exploring
the data and making a decision. For this, we used an evalua-
tion framework, which we called ICE+SUS, as it was inspired by
both the ICE-T questionnaire by Wall et al. [46] and the System
Usability Study (SUS) popularized by John Brooke [47]. In this
questionnaire (Table 4), six statements were worded negatively,
and the remaining six were positive statements to minimize
acquiescence and extreme response biases. The participants were
requested to fill in this questionnaire after using the dashboard
with different guidance levels. Furthermore, we evaluated user
xperience (UE) by assessing whether the encodings effectively
reduced perceived uncertainties and increased the users’ confi-
dence. For this, the responses to the ICE+SUS survey and answers
to additional open-ended questions were solicited. The open-
ended questions regard what could be improved, reworked, or
seen as useful among the uncertainty guidance mechanisms of
the dashboard.

User Evaluation Course—The final dashboard, as resulting
rom the formative sessions (Fig. 10(c)), underwent an online
175
Table 5
ICE+SUS feedback results from the three sub-sessions of
the user evaluation: With full guidance (high intrusive-
ness), with intermediate guidance, and without guidance
(low intrusiveness). Point 1 indicates the strongest
disagreement, and 7 denotes the strongest agreement.

evaluation with five participants (P2–P6). P1 did not partici-
pate due to extensive familiarization with the dashboard. We
conducted individual online and recorded sessions using screen
sharing and remote control. We spent the first few minutes
explaining the views of the interface and basic functionalities of
the dashboard until these were clear to each participant. Then,
the participant was given control to freely explore the dashboard
without our interference.

The user evaluation was divided into three sub-sessions, where
the intrusiveness level of the guidance mechanisms was in-
creasing. To control for bias, we randomized the order of the
sub-sessions. At the end of each sub-session, the users made a
recommendation on the plans and filled out the questionnaire
(ICE+SUS and the open-ended questions) to address the UE and
UP scenarios. The results of this part are discussed in the re-
mainder of this section. The VDAR part resulted in use cases; one
example is described in Section 6.3.

User Evaluation Outcomes—The results of the study with
regard to the intrusiveness dimension (EQ1) are presented in
Table 5. They show a constant improvement with increasing
intrusiveness in the guidance mechanisms, in terms of gained
insights and essence, i.e., added value to the current workflow. This
improvement was constant across all participants, except for P4,
who provided the most positive feedback for low intrusiveness
approaches. A reason might be in P4 being the least experienced
among our study participants (see Table 2). On the other side, par-
ticipants with the highest RT research and practice experiences,
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.e., P3 and P6, commented that they gained the least insight
with the no-guidance dashboard. Their insights increased when
presented with full guidance. However, we noticed a decrease in
reported confidence as more intrusive guidance was introduced to
he interface. The two highly-experienced participants (P3 and
6, Table 2) also expressed less confidence in the uncertainty
ncoding. The results may imply that, in the current state, the
ashboard does not increase the perceived confidence of the
sers. However, it provides them with significantly more insight
hrough the fully guided interface and adds value to their current
orkflows. The confidence issue could also be due to a lack of

amiliarity with the newly introduced visual representations. It is
orthwhile to investigate this aspect in a longer-term field study.
With regard to detail-orientation (EQ2), we observed mixed

ehaviors. The participants had very different preferences re-
arding views, encodings, and detail-orientation. The slice-based
iews and the DVH plot seem to be the most helpful to the pro-
ess based on all participants’ feedback. It is ‘‘a matter of habits’’,
ccording to P2. P5 made use of the uncertainty distribution pop-
p in the slice-based view, and the styling of the DVH lines guided
er. Moreover, the uncertainty indicator seemed confusing to the
articipants as they struggled to ‘‘grasp what was actually repre-
ented’’ (P2). P4 thought that the RBE violin plot was difficult to
read, although it could be useful to make decisions at a structure
level. Most participants agreed that seeing the RBE uncertainty
range is useful to their decision-making process. However, P3 be-
lieves that using one model at a time for the calculation is a better
approach. On the other hand, P6 was skeptical about ‘‘accept[ing]
BE calculations clinically’’ overall. P6 was the only participant
o believe that the new views in the dashboard (beyond the
onventional ones) would not be helpful to the decision-making
rocess. The other participants agreed that, given complete RBE
alculation results, the dashboard could provide new insights into
he sense- and decision-making processes.

Finally, we observed the users’ decision-making processes
uring the study. Seemingly, the different views of the system
ere well integrated as users navigated the data at different
etail levels. As anticipated, for an initial analysis, the participants
ere over-reliant on conventional views, shown in Figs. 3 and 7.
onetheless, they employed the intrusive guidance provided in
hese views, shown in Fig. 5 and explained in Fig. 7. They regularly
nspected the violin plot in Fig. 6, which provided them with a
omparative view of RBE uncertainty at a structure level, and the
lice plot in Fig. 4, which highlighted areas of difference at a slice
nd pixel level. On the other hand, the uncertainty indicator view
Fig. 8), which provides quick guidance of interesting uncertainty
eviations in slices, was not used efficiently. The users expressed
onfusion over how the plot derives its values, which highlighted
he potential need for guidance explainability.

.3. Use case example

In this section, we present a use case example. It has been con-
ucted by one of our evaluation participants (P5, medical doctor)
s part of the VDAR scenario. Further cases were conducted with
he same patient data, and different participants analyzed their
ases following different analytical processes and using different
uidance levels and detail-orientations. The case below is just an
xample; no clinical inferences should be derived from it.
Participant P5 chooses the two plans to compare with the

ashboard. The brain stem is the most important structure to be
pared. She hovers over its contour voxels to explore the dose
alue it receives. The uncertainty distribution comparison pops
p. The plot provides per-voxel insight into the difference in
obustness of the two plans. Plan B (Fig. 11(a) in blue) shows
arger uncertainty. Subsequently, she looks at the comparison plot
176
Fig. 11. Comparison of two plans as conducted in a use case by P5, using the
functionality of our dashboard. The contour colors follow the conventions in the
clinical environment.

and sees an area of interest (per-structure analysis). She zooms
into the brain stem region for a closer look and sets a customized
clinical goal for the maximally accepted dose (54 Gy). She notices,
in Fig. 11(b), the DVH line thickening, and she understands that
the structure has received a higher dose than it should. She
further inspects the dose distribution for both plans (per-slice
analysis). She zooms in to the highest dose to see which plan is
‘‘further out beyond 54 Gy’’ and explores different set-up scenarios.
She has indications that plan A could be more robust and may
incur fewer risks to the brain stem, as seen in the slice analysis
of Fig. 11(c). Plan A might be recommended in this case over plan
B. The case example indicates that participant P5 has employed
all levels of detail (per voxel, structure, and slice) but not all
views (i.e., the RBE violin plot and the uncertainty indicator were
not used). Higher intrusiveness guidance was mostly preferred
in her sense- and decision-making process (and later positively
assessed, as seen in Table 5).

7. Discussion

In this section, we outline the lessons learned from the feed-
back received in the user evaluation and during the uncertainty
guidance dashboard design. We designed a visualization dash-
board supported with uncertainty guidance mechanisms to im-
prove the users’ confidence in their sense- and decision-making
process in PT planning, as expressed in Section 4. The dash-
board supports two tasks: the comparison and assessment of
multiple PT plans (T1) and the analysis of their respective un-
certainties, along with their impact on the treatment outcomes
(T2). It is the first attempt to integrate different detail levels of
guidance and degrees of intrusiveness to a clinical sense- and
decision-making process. We propose an evaluation framework
to successfully measure confidence in guidance techniques by
adapting two evaluation schemes to the needs of our application
(ICE-T and SUS).

This work highlights the literature gap in developing usable
visualization tools that provide guidance to users of PT planning
(and other clinical) systems. The design process indicates that
guidance can be a suitable strategy for supporting PT plan com-
parison. It may generate more insights and add value to the current
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orkflows (RQ1). It is particularly the case for more experienced
sers, e.g., P3 and P6, who seem to prefer increased levels of

guidance, i.e., highly intrusive guidance. In Table 5 P3 and P6
eport increasing average points of 1.16 and 0.33, respectively,
hen using the full-guidance dashboard in comparison to using

t without guidance. Regarding detail-orientation guidance, the
rior analytical preferences of the users seem to matter.
The user evaluation also shows that obtaining more insights

oes not necessarily mean increased user confidence (RQ2). Al-
hough P3 reports an increase of 4 points in insight obtained, it
orresponded to a reported 1.25 points decrease in confidence.
he reduced confidence could be attributed to familiarization
ith the conventional decision-making process. At the same time,
ll detail-orientation levels seem to be needed, even though dif-
erent users might have different preferences on the views to use.
bserving the sessions, we noticed that the participants relied
ore on conventional tools, such as those shown in Figs. 3 and 7,

n exploring the therapy plans.
Participants in the user evaluation expressed interest in the

omparative violin plots shown in Fig. 6. The view enabled them
o compare an essential dimension of uncertainties in plans,
.e., RBE values at a structure level, which was not visible to them
efore our work. This feature seems to be appreciated highly in
T decision-making. P3 reported that the tool is ‘‘useful to get an
verview of how the RBE uncertainties for critical organs compare’’.
owever, guidance explainability could boost users’ trust in the
ool. To increase the value of the technique, an explainable guid-
nce for conveying the underlying calculations to the users would
e a helpful future addition and increase confidence in the tool.
The variance in the participants’ experiences, as outlined in

able 2, contributed to the high variance in the evaluation re-
ults. Highly experienced domain experts might be more skeptical
bout the underlying uncertainty calculations or about adopting
ew approaches in their workflows. We recommend involving
articipants with varying experience levels throughout all design
hases. From the elaborate feedback at the end of the sessions,
e receive encouraging indications that our approach has value

or PT planning. Additional studies with complete PT plan data
re required to develop a more mature approach that could be
dopted in clinical practice. Onboarding techniques could be helpful
n this case, as well as long-term studies (RQ3).

The main limitation in developing and evaluating the dash-
oard was the restriction to use a synthetic dataset that cannot
ccurately account for more uncertainty components. Additional
ET data could provide a more realistic evaluation setup, as the
urrently limited LET data affects the RBE uncertainty calcula-
ions and the final PT plan decision. Domain conventions and
xpectations contributed to a skeptical attitude toward the in-
roduced dashboard. A further developed prototype or longer
raining could contribute to addressing this issue. It could high-
ight the visualization techniques’ value as complementary to
onventional processes rather than being antagonistic. In addi-
ion, some of the representations in our dashboard have been
esigned to strictly follow conventions in the domain. How-
ver, the design could be improved and evaluated in the future
ccording to best practices in the visualization domain (e.g., col-
rmaps for the dose overlay or the contours and encodings in the
VH plots). Also, analyzing multiple datasets, i.e., from different
atients or tumor localizations, would be valuable.
Finally, our observation is that guidance approaches fit very

ell with provenance approaches [49], which can provide ad-
itional knowledge on the path which leads to a decision. The
roposed two-dimensional guidance concept can be generalized
o other domains. We reckon that the approach applies to three
reas in particular: weather forecasting, financial prediction, and
aterial science. The data in these three domains embed multi-

evel uncertainties, which need to be explored at different detail
evels, similar to PT.
177
. Conclusions and future work

We presented a two-dimensional uncertainty guidance to
upport comparison and uncertainty analysis in PT planning vi-
ualization. We exemplify uncertainty guidance on a PT plann-
ng dashboard for plan comparison. Moreover, an evaluation
easured confidence and insights from the use of uncertainty
uidance. The evaluation yielded encouraging initial results and
rovided us with insights for forthcoming directions.
In future work, we plan to develop an evaluation framework

o account for the domain-expertise factor. We will also continue
eveloping our guidance taxonomy and mechanisms to reflect
etter the lessons learned from the current work. Additionally,
e intend to explore the potential of provenance techniques in

nforming uncertainty guidance. Another valuable future direc-
ion is the impact of explainable guidance on the user’s trust
nd confidence—especially in complex uncertainty scenarios. We
nticipate that our approach (with modifications) can be gener-
lized to other uncertainty visualizations applications outside the
edical domain, such as weather forecasting, financial prediction,
r material sciences.
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