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Abstract—We present a registration method relying on geometric constraints extracted from parametric primitives contained in
3D parametric models. Our method solves the registration in closed-form from three line-to-line, line-to-plane or plane-to-plane
correspondences. The approach either works with semantically segmented RGB-D scans of the scene or with the output of plane
detection in common frameworks like ARKit and ARCore. Based on the primitives detected in the scene, we build a list of descriptors using
the normals and centroids of all the found primitives, and match them against the pre-computed list of descriptors from the model in order
to find the scene-to-model primitive correspondences. Finally, we use our closed-form solver to estimate the 6DOF transformation from
three lines and one point, which we obtain from the parametric representations of the model and scene parametric primitives. Quantitative
and qualitative experiments on synthetic and real-world data sets demonstrate the performance and robustness of our method. We show
that it can be used to create compact world anchors for indoor localization in AR applications on mobile devices leveraging commercial

SLAM capabilities.

Index Terms—Camera localization, correspondence problem, 3D registration, closed-form method, augmented reality

1 INTRODUCTION

EGISTRATION of 3D models is a fundamental problem in
Rcomputer vision across a wide range of applications, such as
localization in augmented reality (AR) or mesh completion in 3D
reconstruction. Given a set of correspondences from live scene data
(e.g., a 3D point cloud) to a prior reference (e.g., a 3D parametric
model), registration consists in finding the optimal transformation
T =[R|t] e SE(3) with six degrees of freedom that minimizes
the rotational and translational error between scene and model.

Solving the registration problem in a robust fashion is crucial
in AR applications. The term world anchor (or, sometimes,
spatial anchor) denotes a model curated for the purpose of re-
localizing (i.e., registering) the camera with respect to a given
scene. World anchors are usually created to find correspondences
between keypoints and consist of heterogeneous data collections,
such as RGB keyframes, IMU data, feature descriptors, 3D point
clouds, etc. The data types making up an anchor depend on the
platform’s sensing and computational capabilities. For example,
traditional monocular SLAM [25, 26] uses keyframes and small
blurry images. In contrast, the “Azure spatial anchors” stored by
the Microsoft HoloLens use a proprietary combination of imagery
from multiple cameras with partial 3D reconstructions. In general,
the implementations of world anchors are very diverse. Not only
are they lacking interchangeability across devices and platforms,
but they also have a substantial storage footprint, ranging from a
few megabytes to tens of megabytes in size.

Registration of an anchor usually relies on the large amount
of previous research on point-to-point, point-to-line, and point-to-
plane registration methods [17,|19, |36} |50]]. For instance, classical
algorithms for solving point-to-point registration problems were
proposed by Arun et al. |2, Umeyama [44] and Horn [21]], the
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latter being an essential part of the widely used iterative closest
point (ICP) method [4]. Iterative methods such as ICP perform
very well with a good initialization and dense data models, but
they require partially overlapping 3D surfaces and are often slow to
converge. In contrast, closed-form algorithms [8} 45} 46] leverage
the collinearity or coplanarity of points [32} |38 or normals [10] to
find a solution in a fixed number of steps.

In this paper, we propose to raise the level of abstraction
of world anchors using parametric models, which represents a
fresh approach to the localization problem within known scenes
(see[Figure TJ). Our contributions are two-fold:

Compact world anchors. First, we introduce a scene represen-
tation designed to solve the correspondence problem purely from
geometric information, using matches between sparse parametric
primitives. The memory footprint of our representation is just a few
kilobytes; hence, we call it compact world anchor. Our anchors
contain pre-computed point pair feature (PPF) descriptors created
from parametric primitives (planes, cylinders, spheres) identified in
the reference data. As the anchors only consist of geometry-based
descriptors, they are exchangeable across platforms and devices,
and illumination-independent. We compute such descriptors using
the normals and centroids extracted from parametric representations
of the primitives (e.g., plane equations). To find the scene-to-model
correspondences, we search possible assignments between the PPF
set stored in the anchor and the PPF set estimated online from
primitives detected in the scene. Primitive detection in the live
scene either relies on semantic segmentation [42] or on the plane
detection in AR Foundatio Since the plane detection tends to
struggle in defining precise boundaries, we cannot rely on finding
distinct keypoints, such as a corner of a table. This situation
precludes the use of point-to-any correspondences [/7} |8, 35, [45].
Instead, we solve the registration entirely without keypoints.

! ARFoundation: https://unity.com/unity/features/arfoundation, a Unity wrapper
around ARKit and ARCore.


https://unity.com/unity/features/arfoundation
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Fig. 1: Registration of a parametric model and virtual objects to semantic scene data by leveraging correspondences from parametric
primitives. We use SLAM to scan a scene with an RGB-D camera and obtain parametric primitives (semantic data), such as planes,
from which line and point constraints are harvested. This kind of scene description, which we call a compact world anchor, can serve to
compute a 6DOF scene registration with a map from SLAM obtained at a later point. The main advantage of our scene description is its
compact format (< 100 KB), which requires little storage and computation power.
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Fig. 2: We use a SLAM front-end to scan a known scene and get a real-time updated pose in the camera coordinate system. Note that we
only use SLAM to establish a consistent track of poses, while we completely ignore the 3D mapping. If the SLAM system does not have
any plane detection capability (like AR Foundation), we execute a semantic segmentation on the scene raw point clouds in order to
find primitives in the scene. Next, we estimate the scene-to-model correspondences between our compact world anchor and geometric
features in the scene. We use such correspondences to obtain line and point constraints from model and scene parametric primitives. We
use these constraints to build a linear equation estimate that solves the model-to-scene registration. Finally, we use the pose given by the

SLAM system and the given transformation matrix to render virtual objects in the observed environment.

Closed-form registration from sparse correspondences.
Second, we introduce a novel solver for determining the registration
of an anchor to a live scene. Because both model and live scene data
are parametric and sparse, we cannot use iterative methods
to solve the correspondences and registration simultaneously.
Instead, we introduce a closed-form method leveraging line-to-line,
line-to-plane and plane-to-plane correspondences for registration.
We choose three corresponding primitives to extract geometric
constraints and stack them in a linear equation system to solve the
model-to-scene pose.

In our experiments, we show that our method can localize
the camera accurately in room-size environments where a few
dozens of parametric primitives have been observed. With its
lightweight footprint, our localization method can work with any
SLAM + semantic segmentation framework like AR Foundation,
in particular on mobile devices, to replace the native heavy-weight
scene descriptions. We demonstrate the utility of our approach with
examples in guidance, training, and indoor localization.

2 RELATED WORK

Our work is mainly concerned with registration, pose estimation,
camera localization, and the related topic of semantic SLAM.
The registration problem has a long history of research, with a
large number of solutions relying on keypoint correspondences.
Previous work can be divided into methods which aim to solve
correspondences and pose estimation simultaneously
and methods that determine the registration given such correspon-
dences 146]. Among the latter, least squares approaches
are most widely studied [51)..

2.1

Least-squares solvers, while conceptually simple, require careful
numerical conditioning to yield a stable solution. Some variants
use a Cayley-Gibbs-Rodriguez (CGR) parameterization of rotation
matrices [[I8] 27, [43] to reduce the number of unknowns, but this
increases the complexity of the methods, often compromising their
numerical stability. Consequently, a large set of correspondences
may be needed, increasing the computational complexity [20].

As rich enough data sources for solving the correspondence
problem under these circumstances, most methods rely on keypoint
descriptors 50].. In contrast, our method trades keypoints
for parametric primitives, which are sufficient even if the model is
sparse.

Least-squares methods for pose estimation

2.2 Minimal solvers

Linear and algebraic solutions are less sensitive in terms of
numerical stability, but at the cost of having to solve an equation
system with more unknown parameters. Some methods use
intermediate transformations [8} 32| [38]| or pre-rotations [[10] 46] to
relax the original problem and find the rigid-transformation matrix
in multiple steps. Unlike these methods, we leverage the properties
of 3D geometric primitives to build a linear equation system in 12
unknowns which solves the registration in a single step.
Ramalingam and Taguchi developed a family of minimal
solvers relying on point-to-plane correspondences. They solve
the registration problem by building a specific equation system
for each minimal combination of point-to-plane correspondences.
In contrast, our method always uses the same equation system



independent of the observed correspondences (e.g., three planes,
two planes and one line, two lines and one plane, efc.). Also, our
approach does not suffer from degeneracies or singularities when
all the planes are orthogonal.

Mateus et al. [32] proposed a minimal registration method
similar to ours. They use point-to-point and plane-to-plane corre-
spondences to register sets of overlapping point clouds, whereas we
use line-to-line, line-to-plane and plane-to-plane correspondences
to register model to scene.

Camposeco et al. [§] developed a minimal solver based on
one point-to-point and two point-to-ray correspondences (i.e., one
3D-3D match and two 2D-3D matches). They obtain the 3D-3D
match by triangulating a point from two or more views. The 2D-3D
matches are used to infer the location of two other points. Once the
3D location of the three points is recovered, they use the algorithm
proposed by Umeyama [44] to estimate the camera pose. Instead
of using point-to-ray matches, we use semantic information in the
form of parametric primitives to estimate the camera pose.

The registration of lines to planes was also studied by Chen [[10]].
The author uses lines, the normal vector of planes and a given
point on the line to solve the problem. Chen’s work also includes
a thorough study of the existence of a solution and gives five
theorems stating the necessary and sufficient conditions under
which the problem can be solved. We refer the reader to his paper
for a detailed explanation of such conditions.

2.3 Model-based localization

Model-based localization within known environments plays an
important role in augmented reality. Previous methods focus either
on single-shot localization [24] |41]] or robust relocalization to allow
instant recovery from tracking failure [16} 47].

Shotton et al. [41] developed the SCoRe Forest method to
estimate the pose of a camera relative to a known 3D scene from a
single RGB-D frame. They infer the camera pose from 3D scene
points to 2D image pixels correspondences. Glocker et al. [|16]
propose a randomized ferns encoding for instant recovery from
tracking failure. Their mesh-to-volume registration does not need to
find explicit scene-to-model correspondences; however, they need
a good initialization to use their approach for AR applications. The
user must provide such an initial solution by manually aligning the
model to the scene.

Rather than using raw point clouds from SLAM, our method
uses input data which is on a higher level of abstraction. The only
input data to our proposed method is our compact world anchor
and the parametric representations of the primitives detected in the
scene. By doing so, we decouple the localization problem within
known environments from the underlying device tracking and
surface detection technologies. Also, our method does not need any
user interaction; we support automatic camera localization within
known scenes.

2.4 Semantic SLAM

Volumetric integration for SLAM was pioneered by Kinect-
Fusion [33]], while InfiniTAMv3 [23] showed how volumetric
integration can be done rapidly even for large scenes. Even though
many refinements exist, these approaches still represent the state of
the art for non-semantic SLAM from depth images.

One of the first algorithms proposed to incorporate semantic
information was SLAM++ [40]. It incorporates semantic infor-
mation on a per-object level. Its objects are meshes contributing

() (b)
Fig. 3: Sources of lines and points used to register 3D parametric
primitives. (a) We can obtain lines from the normal vector of a
primitive (e.g., ny,ny,n3) or the intersection of two planes (e.g., £).
(b) A point may be obtained from the intersection of three planes
(e.g., p1), the midpoint of the axis of a cylinder (e.g., p2), etc.

error terms to the overall graph-based optimization problem. Later
approaches, such as QuadricSLAM [34] and others [9} [29] 30} 48]
are similar in that they all use specific complex object instances
rather than generic shapes.

While SLAM++ and its successors are indeed closely related
to our approach, there are significant differences. First, we are not
aiming at reconstructing (mapping) a scene, but we are merely
interested in camera pose estimation, akin to localization in SLAM
or model-based localization. Second, our algorithm leverages
semantic information in the form of parametric primitives derived
from semantic segmentation [42] rather than from object-specific
(or shape-specific) detectors [3| |15} 22]. This choice of simple but
distinctive primitives rather than complex meshes is important, as
the cost of creating, storing, and maintaining a scene representation
is significantly reduced.

3 REGISTRATION METHOD

At the core of our work lies (i) a novel closed-form method for
the six degrees of freedom (6DOF) registration based on three
correspondences between model and scene, and (ii) the compact
world anchor we use to find such correspondences. In the remainder
of this section, we assume that the correspondences are already
known. Our compact world anchors and the method we use for
computing the correspondences is explained in

We use the parametric representations from both, scene
and model primitives, to obtain line-to-line, line-to-plane or
plane-to-plane correspondences, where lines and planes are treated
as infinite. We must extract three lines and one point from three
scene-to-model correspondences to solve the registration problem.
For instance, a line can be obtained from the axis of a cylinder or
the intersection of two non-parallel planes (see [Figure 3)). Similarly,
a point can be obtained from the intersection of three planes, of
two coplanar lines, or the geometric center of a cylinder.

Our closed-form method is robust and determines a unique
solution for T =[ R | t ] € SE(3) from a linear system of equations
with 12 unknowns, i.e., we use nine unknowns for rotation to
avoid problems caused by input data with numerically poorly
conditioning. Consequently, it is not guaranteed that the solution
we obtain is a valid rotation matrix R € SO(3), and we must
re-orthogonalize the estimated rotation matrix after solving.

The resulting registration is unique up to scale, because three
planes (or lines) that intersect in a single point do not reveal the
scale. Resolving scale needs more information, which we obtain
from the radius, height, width or location of another 3D geometric
primitive.
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Fig. 4: Geometric interpretation of the Pliicker line £. The vector
d gives the direction of the line. M is a point on £, and n is the
normal of the plane spawned by £ and the origin.

In the following sections, we explain how to find lines

from plane intersections and points from line
intersections (Section 3.2)). Then, we describe how to set up the
linear equation system and how to disambiguate the
solutions (Section 3.4).

3.1

A line in 3-space can be represented with Pliicker line coordinates
as a pair of 3-vectors d and n, where d'n=0,ie,dis orthogonal
to n. As shown in the Pliicker line coordinates of the line
£ =[d,n]" reveal the direction d of the line and the normal n of
the plane spawned by the line £ and the origin of the coordinate
system. A Pliicker line £ remains unchanged when undergoing a
rotation about d or a translation along d.

Pliicker coordinates provide a convenient representation of the
intersection of two planes. We can find the dual line £*, a 4 x 4
skew-symmetric matrix, formed by the intersection of the planes
P=[P\,P,,Ps,P;]" and Q=[01,05,03,04] " as

L =pPo"-0QP", (M

Intersection of planes

with P and Q being the 4-vector coefficients of the parametric
representation of the planes

Pix+Py+Pz+P,=0 and Qx4+ Qoy+Q3z+0Q4=0. (2)

As we mentioned before, the boundaries of planes detected with
front-ends like AR Foundation might not be precise. Nevertheless,
their parametric equations are always well defined. By using
Pliicker coordinates, we can obtain stable and precise lines (from
intersections of planes) without the need to use points on the lines
to represent them.

3.2

Let a and b be direction vectors, and let p, and p;, be points on two

coplanar lines (see [Figure 5a)). With ¢ = p;, — p,, the intersection
point Z of the two lines is given by

Intersection of lines

+1, if (bx )" (bxa) >0,

—1, otherwise.

b x ]l

T= .
[bxal

Pa+sS

a, where s = {
3)

3.3 Linear equation system

Given three Pliicker lines £; in model coordinates and their corre-
sponding three Pliicker lines £} in camera coordinates, such that

I R 0
_[t]xR R

L

Eia (4)

4

we can construct a linear equation system Ax = b to solve the
unknown 6DOF transformation formed by the rotation matrix R
and the translation vector t that relates £; to E;. The rotation R
only affects the direction vector of £; = [d,n] "

Ri1 Rz Ry3 d
d =Rd=| Ry Rx Rxn dr | . (®)]
R3; R3z» Rs; d3

Therefore, given the three lines £;, where

~ ~ ~7T
/:/l = [al7 a, as, ai, az, 03] )

Ly = [by, ba, b3, by, by, Z3]T

)

~ ~ ~7T
L3=[c1, c2, ¢3, C1, G, 63 (6)

we construct the following linear equation system Ax = b using
a point p = [py, py, pZ}T, which can be obtained from intersecting
three planes:

ai a a3 0 0 0 0 0O 0 0 0 O
0 0 0 aj aa a3 0 0 0 0 0 0
00 00 0 0 a a a3 0 0 0
by by b 0 0 0 0 0O 0 0 0 O
0 0 0 b by by 0 0 0 0 0 0

A_ |0 0 0 0 0 0 b b b3 000
¢t a3 00 00 0 0 0O0O]|’
0 0 0 ¢ 2 c3 0 0 0 000
00 00 0 0 ¢ ¢ 3000
px Py p. 00 0 0 0 0 100
0 0 0 pepp. 00 0O0T10
L0 0 0 0 0 0 pe py p 00 1]

.
X = [Ru Ri2 Ri3 Ry1 Ry Roz R31 R3p Raz 6, ¢y tz} )

T
b=|aj a5 d b by By ¢ < < plp Pl (7)
The matrix A has a unique solution as long as the three lines are
not in a degenerate configuration [10]. If, for example, all lines are
coplanar, or two of them are parallel, the matrix A will become
singular, and there will be no solution.

3.4 Direction of lines

The calculation of a line as the intersection of two planes yields
two solutions, since the sign of the line direction is undetermined.
Consequently, with three lines as input, we obtain 23 = 8 solutions,
which are identical up to a permutation of the axes. A common
approach for closed-form registration resolves this ambiguity by
verifying which of the permutations is correct with the help of
additional points [18, [38]. However, we enforce a consistent
orientation between the corresponding lines from scene and model
to avoid an explicit verification step after solving the equation
system. This approach is preferred if additional points may not be
available or not reliable.

To ensure consistent line orientation, we prescribe that all
direction vectors d; should point in the same direction as the
surface normals. For example, given the planes I1; and II,, and
their intersection line d3 (see [Figure 5b), we let d3 point in the
same direction as the surface normal of the plane IT3. If the line
forming the intersection of the planes points away from the normal,
we invert the line’s direction.



(b)
Fig. 5: (a) Intersection point Z of lines & and 3. (b) Convention established for pointing plane intersection lines in the right direction
before building the equation system. A point pair feature F can be obtained from (c) a point m; that lies on the surface of a cylinder and
a point my on a plane, or (d) a point m; that lies on a plane and a point m, on another plane.

3.5 Orthonormality constraints

Our registration method is overdetermined, as we solve a 6DOF
problem with an equation system in 12 unknowns. Our method is
minimal only in the number of corresponding parametric primitives,
such as planes, from which we obtain the lines and point constraints.
Since we do not rely on point-to-point correspondences for reasons
of robustness, we do not use a minimal least-squares solver [2} |8,
21}, 144).

We explored the option of using the orthonormality con-
straints [[17]] or CGR parameterization [43] to reduce the number
of unknowns in the equation system. However, as explained by
Wientapper et al. [46], solvers based on the Cayley parameterization
will not succeed whenever the correct solution for the rotation has
an angle of 7.

We could use orthonormality constraints to reduce the number
of unknowns from 12 down to nine. This approach could reduce the
necessary number of lines from three to two. However, we would
also need intermediate transformations [38]] to ensure the 9 x 9
matrix A will not become singular or rank-deficient. For example,
if the point happens to coincide with the origin of the coordinate
system, and both lines lie on the xy-plane, A has rank 6.

Therefore, we use three lines and one point to ensure we get a
unique solution in a single step, regardless of the orientation and
position of the lines and the point. In practice, we usually find
that more than three primitives are detected in the scene within a
few seconds of scanning. Therefore, the advantage of a minimal
polynomial system with only six unknowns is negligible.

4 SCENE DESCRIPTION AND CORRESPONDENCES

So far, we have assumed the scene-to-model correspondences are
already known. In this section, we describe how to efficiently
create a scene description and the approach to find correspon-
dences. Correspondences are established by analyzing all possible
assignments between the primitives detected in the scene and the
primitives in the reference model. Usually, localization methods
use gradient-based keypoint detectors (e.g., SIFT features) to
estimate the camera pose in known scenes. In contrast, we use
geometry-based descriptors to create compact world anchors that
need very little storage space and computational power.

4.1

In order to find a proper geometric characteristic, we revisit the
work of Drost et al. [[12] describing a 4-vector descriptor called
point pair feature. PPF is a method to detect 3D objects in point
clouds using descriptors built from oriented point clouds (i.e., each
point has an associated normal) to establish correspondences from

Compact world anchors

(d)

each scene point to a model point and, ultimately, align the model
to the scene.

A PPF describes the relative position and orientation of two
oriented points m; and my, with normals n; and n;, within the
same relative coordinate system. Our 3-vector descriptor F is
constructed from m; and m, as

F(m;,m;) = (£(ny,d), £(n2,d), Z(ny,my)), (®)

where d = mp; —m;, and £ denotes the angle between two
vectors. Drost et al. use a fourth dimension characterizing the
Euclidean distance from m; to m, (see [Figure 5c). However,
our experiments showed that its exclusion from the descriptor
presents no significant decrease in robustness (in line with the
results obtained by Rusu et al. [39]).

In contrast to Drost et al., we build our PPF set from surface
points and normals of the primitives. For example, given the
cylinder and the plane in [Figure 5c| we use the normal n; of
the point m; that lies on the surface of the cylinder, and the normal
n, of the point m; on the plane, to construct our 3-vector descriptor
F(m;,m;). The point m; is the closest point on the cylinder to the
point my. It is coplanar with the center of the cylinder my, and its
normal n; is orthogonal to the normal of the cylinder ng. The point
m, is the centroid of the plane, i.e., the arithmetic mean of all the
four corners of the plane. For the example in we use
the point m;, which is the centroid of the plane on the right of the
figure, and the point my, which is the centroid of the plane on the
left of the figure.

Our compact anchor consists of a PPF collection computed
offline from pairs of parametric primitives. Note that not every
combination of two primitives in a model yields a meaning-
ful descriptor F. For example, any combination of two planes
from a cube will produce the same descriptor. In the end,
we would obtain ¢P>» = 30 identical descriptors. Parallel planes
also produce meaningless descriptors, because the three angles
Z(ny,d), Z(n,d), and Z(n;,n;) of [Equation 8 would be equal in
that case. Therefore, we exclude descriptors F from parallel planes,
planes with equal areas, adjacent planes, as well as primitives with
the same height or radius (e.g., two identical cylinders).

4.2 Finding correspondences

For every descriptor F? (s’ s;)), which we estimate online from the
primitives detected in the scene, we run a brute-force search of a
corresponding model descriptor Ff‘(m{l,mi) in our anchor. First,
as depicted in[Figure 6] we measure the similarity & of every scene
descriptor against each model descriptor as

m

&= min{HFj\ —F
=

}7 i=1,.,n<sh, )
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Fig. 6: Steps for robust scene-to-model correspondences estimation using our compact scene representation. (1) We measure the similarity
& between the scene descriptors and the descriptors in our compact world anchor. (2) All the & < T give us scene-to-model descriptor
correspondences, which, in turn, cast primitive correspondences votes that we collect in an accumulator. (3) The correspondences s <> m
with at least Z votes give us the scene-to-model correspondences. When a model primitive is mapped to more than one scene primitive
(or vice versa), we take the correspondence with the maximum number of votes. In this example, m; is mapped to s, and s3, since
s> <+ my received more votes than s3 <> my; we take the former as the right correspondence.

where S is the number of primitives in the scene, n is the size of
the PPF set computed from the primitives in the scene, and m is
the size of the PPF set comprising the compact world anchor.

Secondly, we take all the & below a threshold 7 to create
scene-to-model descriptor correspondences

SC?:(sLHmé,SZ(—)mi) Ve<t, 0<k<n, (10)

where s}, ¢+ m/, and sfj & mi represent a scene-to-model primitive
correspondence. The threshold 7 = 0.1 was empirically determined
from the results obtained in [Section 6.2] We kept the same value
for the experiments in Sections [6.4] [6.5] and [6.6] since we always
obtained good results.

In scenes with symmetries or clutter, the & < 7 test may produce
false-positive descriptor correspondences SCkA. Consequently, at
the end of our primitive correspondence matching, we use a
voting scheme for robust matching. The votes are collected in
an accumulator A of size ¢ < 2p, with p being the number of
descriptor correspondences SC,’?. A primitive may be associated
with multiple descriptors F, because every descriptor F is computed
from two primitives. Therefore, every scene-to-model descriptor
correspondence SC4 casts a vote for both of its two associated
scene-to-model primitive correspondences s}, <> m}, and s, > m.

If a correspondence s' <+ m/ receives at least Z number of votes,
we attest that we have found a scene-to-model correspondence. The
metric Z, given by

! ¢ )2
Z=p-o-¢, HZ%ZAI', o= Lii(Ai—p)”
i=1

e an

indicates the number of standard deviations ¢ by which the A;
differ from the mean value p of the accumulator 4. The variable
{ = 1.5 is a threshold we use to control the lower bound of the
metric Z. The value of { was chosen based on the results described
in Sections[6.2} [6.4} [6.5] and [6.6]

When a model primitive is mapped to two (or more) different
scene primitives (or vice versa) by multiple s’ <+ m/ correspon-
dences that received at least Z number of votes, we take the
correspondence s’ <> m’ with the maximum number of votes.

The maximum theoretical number of €; is sP> (see [Equation 9|
and the first step in [Figure 6)), where S is the number of primitives
detected in the scene. Therefore, the maximum theoretical number
of votes to be considered is 2sP», because every & produces
a descriptor correspondence kaA (see , and each
correspondence casts two votes (see step 2 in [Figure 6)). However,
not all & < 7. Moreover, the size of the PPF set extracted from
the primitives in the scene is usually smaller than sP,. Therefore,

the maximum number of votes to be considered is typically much
smaller than 2P, resulting in faster computation.

5 PARAMETRIC PRIMITIVES AND REGISTRATION

Assuming a PPF set has been prepared offline and stored as
an anchor, online registration still requires to detect parametric
primitives at runtime in order to finally calculate the overall
model-to-scene transform.

5.1

We need to extract three lines and one point from corresponding
primitives in scene and model. For detecting such primitives in
the live scene, we use two different technologies, the semantic
segmentation of Stanescu et al. [42]] and AR Foundation.

On the one hand, Stanescu et al. [42] fit primitives (planes,
cylinders, spheres, efc.) to raw point clouds by estimating their
parameters within a RANSAC [13]] framework, and improve the
fitted models, as the sensor moves through the scene. This semantic
segmentation method needs point clouds which are registered in a
global coordinate system, i.e., the segmentation works on top of an
existing SLAM system like KinectFusion [33]] or InfiniTAMv3 [23].

On the other hand, AR Foundation is a multi-platform com-
mercial framework for AR development within the Unity game
engine, of which we use two main features, namely device tracking
and plane detection. This framework uses visual natural features
combined with the device’s IMU measurements to estimate the
pose of the device. In order to find geometric planes, it looks for

Detection of parametric primitives



clusters of keypoints that appear to lie on common horizontal or
vertical surface

Both technologies produce a semantic model of the scene
consisting of a set of primitives and, to create our compact world
anchor, we use only the parametric representations of the primitives
in the model. Therefore, the only input data to our proposed method
consists of the compact anchor and the parametric representations
of the primitives detected in the scene, from which we estimate
geometric correspondences. Since we use SLAM only to establish
a consistent track of poses, we can replace the SLAM system with
any device tracking approach.

5.2 Robust registration estimation

Given a set of correspondences, we need to select the best subset
of correspondences in order to get the best solution. We wrap our
closed-form method in a RANSAC [13]] loop to account for all
possible combinations of minimal sets of primitives. Our solver
uses only three parametric primitives to solve the model-to-scene
registration problem. When more than three scene primitives are
available, we compute the registration matrix T=[R | t ] € SE(3)
for all possible subsets of three primitives. Then, we evaluate the
estimated transformations by using them to transform the model
primitives and computing the mean rotational and translational
error between the transformed model primitives and their corre-
sponding scene primitives. We measure the rotational error by
computing the normal deviation error, and, the translational error
by computing the primitive-to-primitive Euclidean distance. Finally,
the transformation T which minimizes the mean registration error
between model and scene data is selected as the solution. Inside
our RANSAC scheme, we also reject subsets of primitives which
produce degenerate configurations, such as parallel planes or lines.

6 EXPERIMENTAL RESULTS

We first analyzed the performance of our method on synthetic
data and then used real-world data sets for validation. In order to
show the practical value, we also include several test scenarios and
describe the results in the followinﬁ

6.1

For the simulated experiments, we created 100 random scenes,
each one of them consisting of a cube, a box and two cylinders,
with the cube being the smallest object with a side length of five
units. All four objects were spawned inside a square area with a
side length of 50 units. The planes are represented by four corner
points and a parametric equation. The cylinders are represented by
two points, the centers of the top and bottom base, and a radius.

A test set was created in three steps. First, we placed the objects
at random non-overlapping positions, then we transformed all the
parametric primitives of the scene using random rotations and
translations, and finally we added Gaussian noise to the points
defining the primitives.

We tested 10* trials (100 random transformations for each of
the 100 random scenes) with different levels of noise (see[Figure 7).
We compare our method to the minimal solvers of Arun et al. 2],
Horn [21]], and Ramalingam and Taguchi [38]]. The latter provide

Simulations

2Note that newer generations of devices featuring LIDAR or time-of-flight
sensors include real depth sensing to facilitate primitive detection.

3We refer the reader to the supplementary material video for a more compelling
demonstration.
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Fig. 7: Rotation and translation error for 10* tests as a func-
tion of the level of noise on the parametric primitives of the
scenes. The proposed algorithm was tested using only line-to-line,
line-to-plane, and plane-to-plane correspondences at a time. The
rotation error was similar for all three types of correspondences,
while plane-to-plane correspondences produced the best results in
terms of translational error.

(a) (b)
Fig. 8: Example of the effect of noise on the parametric primitives
for a given scene with a level of noise of (a) 0.4 and (b) 0.6 units.

ten different point-to-plane solvers. In particular, we compare our
method to their Points(3,2,1) <+ Planes(3) solver (P2I1 3-2-1),
since they present it as the main configuration (it does not achieve
the lowest registration error, but it is the fastest one).

The rotational and translational errors, eg (R) and ¢, (t), were
measured as

er (R) = acos (%(Tr(RTRGT) _ 1)) et =t—tar]. (12)

The errors in the estimated 6DOF transformation matrix were
measured using only line-to-line, line-to-plane, and plane-to-plane
correspondences at a time. [Figure 7| shows the mean errors in the
estimated rotation and translation for the 10* trials at different
noise levels. The minimum eg (R) and e, (t) errors are in line with
related work [38]].

The P2I1 3-2-1 solver [38]] registers six points to three planes
assuming the following correspondences between points and planes

H] <:{P1,P2,P3}7 ITQ@{P4,P5}7 H3 <:{P6}. (13)

Therefore, we also used six points on three planes for testing the
least-square methods [2} |21]], while avoiding any spatial distribution
that might make them fail.

We also compare our method to the non-minimal solvers of
Olsson and Eriksson [35]] and Briales and Gonzalez-Jimenez [7].
They leverage point-to-point, point-to-line and point-to-plane cor-
respondences to solve the registration. The latter use the so-called
effective number of correspondences, 1 = 3mpin + 2my + lmyy,
to define the minimum number of matches for which a solution
may exist. The minimum value is seven. Similarly to their tests
on synthetic data, we used a problem size /7 = 10 for testing
their method. We used two points (), one line (my) and two
planes (my7). We used the same problem size (171 = 10) to test the
solver of Olsson and Eriksson [35]).



(a) (b)

Fig. 9: Results of our approach on two out of the ten real test
data sets that we created. (a) ds3, (b) ds5. Each figure shows
the parametric model, the ground truth initial position (green
camera), the registered initial position (blue camera), the ground
truth trajectory (green line), and the estimated trajectory (blue line).

The maximum level of noise we used to test our method on
synthetic data was 0.4 units (see [Figure 8). Given the size of our
scenes is 50 units, a standard deviation (o) of 0.4 is less than 1%
of the size of our scenes. Although the noise levels we use to test
the proposed algorithm seem low, a ¢ of 0.4 units also represents
8% of the size of the cube, the smallest object in the scenes. The
distortion that the scenes, respectively the parametric primitives,
suffer with a o above 0.4 is significant (compare [Figure 8a), since
applying the distortion to each point separately amplifies the effect.

The results in[Figure 7| show that our algorithm is outperformed
by the least-squares methods of Arun et al. [2f] and Horn [21],
which rely on point-to-point correspondences. However, the main
difference between our proposed method and the least-squares
methods [2, 21] is the nature of the input data they work with.
We focus on solving the model-to-scene registration problem for
parametric models consisting of high-level primitives, such as
planes made up of only a few vertices, and environments with little
to no surface texture. We do not require dense reference data like
meshes, as obtained from RGB-D reconstructions.

The results in also show that our algorithm
achieves lower translation error than the methods of Olsson and
Eriksson [35]] and Briales and Gonzalez-Jimenez [7]. We used two
points, one line and two planes to test these methods, nevertheless,
we achieve better accuracy with fewer correspondences (only three).

6.2 Paper models

For experimenting with real scenes, we physically created ten data
sets of cardboard models placed on a flat surface. Each data set
consists of a cube, a box and two cylinders, for which the digital
reference model was created on Matlab and exported as plain text.

We recorded a sequence for each scene with the Occipital
Structure Cord] RGB-D sensor and used InfiniTAMv3 to establish
a pose track across frames. We obtained the parametric primitives
by using the semantic segmentation of Stanescu et al. [42]. We
further used the ArUco fiducial markersf] to create a corresponding
track treated as ground truth. In [Figure 9] the camera tracks for two
of the sequences are depicted. The blue track is reconstructed by
registering the reference model to the segmented primitives, while
the green track is the one estimated using the fiducial markers.
shows the minimum and mean errors eg (R) and e, (t)
per data set. Overall, the errors match our observations from the
simulations.

4Structure I0: https://structure.io/structure-core
3 ArUco: https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
6Code on Github [[7]: https://github.com/jbriales/CVPR17

Min MAE
Dataset | ex(R) |  e(t) er@®) | et
dsl 2.8440° | 0.3666 cm | 3.2184° | 0.6325 cm
ds2 0.9149° | 0.2878 cm | 1.4043° | 0.7021 cm
ds3 1.4388° | 0.0556 cm | 1.6645° | 0.3757 cm
ds4 2.7624° | 0.2045cm | 3.1306° | 0.4631 cm
dsS 1.6083° | 0.1533 cm | 1.9092° | 0.3977 cm
ds6 0.9616° | 0.5443 cm | 1.2019° | 0.6915 cm
ds7 0.6672° | 0.6243 cm | 1.1250° | 0.8107 cm
ds8 0.4837° | 0.4385cm | 0.8936° | 0.5876 cm
ds9 1.1876° | 0.7681 cm | 1.3608° | 0.9824 cm
ds10 1.3495° | 0.5998 cm | 1.4841° | 0.8017 cm

TABLE 1: Minimum and mean absolute errors eg (R) and ¢, (t) of
the ten real paper model data sets.

Runtime (1) Runtime (ms)
Correspondences | Mean | Median Correspondences Mean Median
plane-to-plane 6.74 6.7 point-to-any [35]* 169.79 168.14
line-to-plane 6.91 6.9 point-to-any [7]* 239.19 239.08
line-to-line 6.64 6.6
P2IT 3-2-1 [38] 1054 | 104 Segmentation (1ms)
point-to-point [2] | 3.29 33 Iteration Mean Median
point-to-point [21] | 1.94 | 1.9 init 95.79 93.95
update 5.08 4.75

* We obtained the point-to-any [7, [35] runtimes using the implementation made
available by the authorsﬂ

TABLE 2: Registration and segmentation runtime performance
on synthetic and real-world data sets, respectively. Left and top
right: Mean and median runtime for 10* runs on simulation
data in microseconds (left), respectively milliseconds for convex
optimization based algorithms (top right). Bottom right: Mean and
median point cloud segmentation runtime in milliseconds for the
initial run and the subsequent frame-by-frame updates for the ten

data sets based on paper models in

6.3 Runtime

Our algorithm was implemented in C/C++, compiled with GNU
gce 8.3.0 and tested on a desktop computer with an Intel Core
i7-7700HQ CPU at 2.80GHz and 16 GB RAM.

The left of shows the runtime of all the simulation
tests for our pose estimator and the methods of Ramalingam and
Taguchi [38]], Arun et al. [2] and Horn [21]. As expected, the
overall runtime was similar for plane-to-plane, line-to-plane and
line-to-line correspondences, because we always solve the same
linear equation system built from three lines and one point.

Like the results in the results in show that
our algorithm is outperformed by the least-squares methods of
Arun et al. [2]] and Horn [21]. However, the runtimes in
for our approach not only consider the execution time for solving
the equation system in but also the runtime to extract
the three lines and one point. The input data for the least-squares
methods [2} [21] are six points on three planes, while our method
takes as input three parametric primitives, from which we extract
three lines and one point.

At the bottom right of the runtime of the iterative
semantic segmentation algorithm [42] for the tests in[Section 6.2]is
given. The segmentation of the first backprojected point cloud takes
most time, while incremental updates are incorporated quickly.

Convex optimization algorithms: We obtained the results in
Figure 7| and the top right of for the methods of Olsson
and Eriksson [35]], and Briales and Gonzalez-Jimenez [7]], using
the implementation made available by the latter, featuring a highly


https://structure.io/structure-core
https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
https://github.com/jbriales/CVPR17

optimized C++ convex optimization toolboxﬂ underneath a Matlab
user interface. Note that both methods are iterative. The average
number of iterations to solve the registration for the 10* simulation
tests was 26 and 16, respectively.

The core of the work of Olsson and Eriksson [33], and
Briales and Gonzalez-Jimenez [[7], is a constant size semidefinite
program (SDP). Their quadratic formulation allows them to solve
the registration problem in almost constant runtime per iteration,
irrespective of the number of correspondences. These methods
are therefore highly suitable for problems with large numbers of
correspondences. Note that the dominating order of operations
to perform per iteration to solve an SDP is max{np3,n2p2,n3},
with n and p being the problem dimensions [6]. Therefore, the
runtime of their solutions is at the order of 10° times higher (per
iteration) compared to all other methods tested. In this respect,
our findings are consistent with the results originally discussed
by Briales and Gonzalez-Jimenez [[7]. They both note that the
convex optimization problem is harder to solve as the number
of correspondences approaches the minimal case and might give
suboptimal results, therefore suggesting to use their methods only
in non-minimal cases.

Mobile implementation: Implementing semantic segmentation
on mobile devices from scratch would be relatively expensive.
However, AR Foundation relies on scene segmentation (i.e., plane
detection) already optimized for the target hardware, with negligible
extra cost. As a result, the overall runtime is in the order of a few ms
in practice. This can be seen in the accompanying video material.

6.4 Model-based localization

In order to provide a first AR use case, we recorded two sequences.
They show a typical training scenario and, in both examples, the
parametric model consists of a set of planes and cylinders (green
wireframe in the left of [Figure T0). Similar to our paper models,
the reference models for these scenes were created manually. The
first scenario shows an office-like environment where the user must
follow instructions. For example, such a setup may be used as
part of a fire safety drill, where employees learn procedures to
follow in case of an emergency. The second scenario was recorded
in a typical industrial environment. It showcases a repair person
referring to an interactive digital manual to learn basic maintenance
tasks on a factory floor.

6.5

So far, we have only presented experiments in relatively small
scenes. In order to demonstrate the full power of our approach, we
apply it to a room-scale environment, a kitchen, and explore the
feasibility of using the method for indoor localization.

First, we reconstructed a 12 m® room using InfiniTAMv3 .
Second, we ran the semantic segmentation of Stanescu et al. [42]
on the raw point cloud (see the reconstruction of the scene
in using the recorded pose track to create a semantic

model of the kitchen. In the parametric model created
using the segmented primitives from the given reconstruction is

shown. The parametric model contains 45 parametric primitives,
and the compact world anchor contains 396 PPF items, which
represent the scene in approximately 19 KB of uncompressed plain
text. For comparison, we also created an Azure world anchor of the

Indoor localization

7CVX Toolbox: http://cvxr.com!
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Fig. 10: Use case of our method for AR in real world scenarios.
Left: Model reprojection into the image using the registered pose.
Right: Instructions to complete a task presented in AR.

same scene with a Microsoft HoloLens. The size of the obtained
Azure anchor was 4.6 MB of binary data.

We recorded two new sequences starting from the west side
and the east side of the scene, respectively. These sequences were
further chopped into smaller parts with random starting points to
demonstrate the re-initialization capabilities of our approach. Four
examples are shown in [Figure T4]

Since we need three correspondences (observed and matched
primitives), most of the time, we need to take a few frames before
getting a registration result (i.e., our method does not allow instant
localization from a single frame). The number of depth frames we
need to segment before having a localization result depends on
the size of the scene. For example, for the ten paper models data
sets (see [Section 6.2), we required an average of five frames in
order to get an initial registration result. In the case of the room
in[Figure T1] we needed approximately 12 frames.

In our method is compared to Horn’s method
as a representative for the algorithms tested in Sections [6.1] and
[6:3] There is no strong difference in registration accuracy, however,
there is a significant difference in how many primitives are required
in practice to obtain a successful registration result. For the method
of Horn we need to infer four 3D points, which requires seven
primitives in this scenario to avoid degenerate cases. In contrast,
our algorithm requires only three primitives. More examples and
comparisons are provided in the supplementary material.

6.6 Localization based on commercial SLAM

To demonstrate the interoperability of our method with a commer-
cial SLAM solution, we created a mobile AR application based
on AR Foundation. We created an iOS application for the iPad Pro
which demonstrates how our method can be used to replace native
spatial anchors for re-localization with our lightweight alternative.

The mobile app lets the user scan a scene and save a model for
later localization inside the same scene. During the model creation,
the user can place virtual objects on the detected planes and save
them (see the hamburger on the fridge and the avatars on the desk
in the top right of [Figure T3). Later, the user can scan the scene
again, and, after a successful localization of the device in the new
scan of the scene, these virtual objects are re-spawned in the same
place where the user put them during the model creation process

(see the avatars in the bottom right of [Figure 13).
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Fig. 11: Reconstruction of (a) a 12 m? room and (b) its corresponding parametric model created by segmenting the 3D scan.
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Fig. 12: Comparison of the registration accuracy of the method of
Horn (top left) to our method (top right). The results in the
top row do not show any major visual discrepancies. The bottom
row shows the parametric model (left) and the primitives detected
in the scene (right). To enable the use of Horn’s algorithm, we
need at least four points (i.e., the four red dots 1 to 4). To estimate
the points 1 and 2, we use the planes with blue contour and also
the planes with green contour (five planes in total), while points
3 and 4 are the geometric centers of the cylinders. In contrast,
the blue arrows and the cyan dot (p) are the three lines and the
point our algorithm requires. To obtain those, we compute the
intersection of the planes with blue contour only. In summary, for
such a scenario we need seven parametric primitives to estimate
enough input data for Horn’s algorithm, while we only need three
parametric primitives for our algorithm.

The app saves three files in the model creation process: a JSON
file containing our compact world anchor for localization, an OBJ
file containing the 3D parametric model of the scene (see bottom
left of [Figure 13), and a JSON file with the position, orientation
and scale of the virtual objects that were spawned in the scene
during the modeling process.

We created parametric models of different scenes to test the
re-localization capabilities of our compact world anchor and regis-
tration method using AR Foundation. During the model creation,
we placed virtual objects on different planes in the observed scene
to visually assess the quality of the registration. Four examples are
shown in [Figure T3] The fourth column shows the detected planes
during the localization process and the registered parametric model.
For example, the cabinet in the first row of and the mini
fridge in the second row show that the result of the registration
between the detected planes (yellow planes) and the parametric
model (colorful planes) is visually very good.

Fig. 13: Example of modeling and localization based on commercial
SLAM. Top left: Scene scanning for model creation. Top right:
Storing of parametric model and virtual objects. Bottom left:
Screenshot (taken on a desktop PC) of the parametric model
created and stored on the mobile device. Bottom right: Registered
parametric model, and virtual objects, in a new scan of the scene.

7 DISCUSSION

Based on our experimental results, we would like to revisit our
current approach and discuss some aspects in detail.

Tracking: The proposed registration method is agnostic of the
tracking system used to feed camera poses information. We used
InfiniTAMv3 or AR Foundation, but any SLAM system can be
used. As our work is computationally lightweight, it is well suited
for running on all mobile platforms with built-in SLAM capability,
such as ARKit or ARCore devices.

Mapping and segmentation: For the desktop experiments, we
used InfiniTAMYV3 for tracking, but the segmentation method of
Stanescu et al. was based on the raw depth data, simply
backprojected into a common reference frame using the pose
tracking. This decision (owing to the fact that performing a full
integration of the two systems is not an easy task) relinquishes
the superior reconstruction quality of InfiniTAMv3. The results
presented in this paper should be interpreted with the fact in mind
that the registration performs well despite a rather poor ad-hoc
reconstruction stage.

Correspondences: With respect to the creation of correspondences
for registration, the current main limitation in using our 3-vector
PPF descriptor to find the correspondences is that the given
geometric primitives must be finite. Although we designed the
registration algorithm to work with infinite representations of
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Fig. 14: Indoor localization examples for random initialization points using InfiniTAMv3 and semantic segmentation. First column:
Backprojected point cloud of the first n frames recorded before obtaining an initial registration. Second column: Segmented primitives
from the scan in the first column, and camera pose. Third column: Estimated camera pose in the model coordinate system. Fourth
column: Registered segmented primitives. Fifth column: Registered parametric model (green wireframe).

Fig. 15: Indoor localization examples for AR applications on mobile devices leveraging AR Foundation capabilities. First column: RGB
image of the scene. Second column: Detected planes. Third column: Estimated camera pose in the model coordinate system. Fourth
column: Registered parametric model planes to planes detected in the scene. Fifth column: Registered virtual objects.




lines and planes, we rely only on parametric information to
find the correspondences. Consequently, infinite primitives would
make it impossible to automatically detect the scene-to-model
correspondences. However, we do not believe this is a major
limitation in practice.

Registration: Although the experimental results show the proposed
method has a good performance, we are not claiming this algorithm
seeks the best numerical stability, the best convergence time, or
outperforms previous solutions as a whole. Rather, we want to
emphasize that we propose an alternative solution to the registration
problem, which works well, but is much more frugal in its needs
to store and process scene data.

Sources of error: The experimental results show low registration
errors in simulations, but higher errors when working with real data
sets. We explain this discrepancy with the inaccuracies confounding
our real-world tests, where calibration inaccuracy, drift of the
SLAM front-end, and noise in the segmentation accumulate. A
detailed analysis of the magnitude of these various categories of
error is left for future work.

Limitations of commercial SLAM: While AR Foundation has great
device tracking and plane detection, it lacks the ability of detecting
anything else than planes. In industrial environments, where cylin-
drical objects like pipes may be dominant, this could be a limitation.
Moreover, device tracking quality with AR Foundation on mobile
consumer hardware can be poor in scenarios where SLAM from
dense depth maps (like InfiniTAM) works without problems.
However, it is reasonable to expect that future generations of
mobile hardware will overcome these issues.

8 CONCLUSION

We have presented a novel registration method for AR and
indoor localization, which relies only on geometric information
to register anchors consisting of geometry-based descriptors to
parametric primitives in the scene. The experimental results show
the effectiveness and robustness of our method in small and medium
sized scenes.

While not intended to replace ICP or SoftAssign algorithms for
registration, we believe our method can be a serious alternative to
established methods for world anchors, as now used by commercial
SLAM systems (e.g., HoloLens), at a fraction of the storage cost
and potentially better scalability.

Future work will concentrate on exploring the use of compact
world anchors for scene detection in addition to scene registration.
Because of the huge database sizes and high computational require-
ments for search, the detection of the user’s current whereabouts
from SLAM maps is currently deferred to cloud services such as
the Microsoft Azure cloud. With our approach, scene detection can
be carried out in a lightweight manner, but it is currently unknown
which trade-off (e.g., precision vs recall) is implied. We find this
investigation to be a compelling topic for future research.
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