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Abstract: We study deflecting sub-kilometer sized In the impact simulations, we resolve each scenario
potentially hazardous asteroids that may collide with in IM SPH particles. The physical system underlying
Earth by deploying a kinetic impactor. The momentum the simulations is based on a rocky cuboid section of
delivered by the impact of a spacecraft may sufficiently Didymoons’s surface corrected for a surface curvature
alter the asteroid’s orbit and henceforth avoid an impact corresponding to an assumed target diameter of 160 m.
with our home world. While near-Earth asteroids of this This results in a resolution of about 50 cm in the simu-
size are difficult to observe, they are believed to be very lation scenarios. Target porosities range from 0 % (com-
common and to consist of a wide variety of materials petent rock) to 75 %. The projectile is modeled as a sin-
with varying bulk densities. gle aluminum SPH particle with a mass of 500 kg that

Apart from directly transferring momentum from hits Didymoon at 6 kms"' and impact angles of 0°
the projectile to the target, post-impact effects of a ki- (head-on) and 45°, respectively.
netic impact will cause material to be ejected from the The total momentum carried away to infinity by es-
impact site. This material will carry additional momen- caping ejecta enhances the momentum transferred to the
tum and hence increase the target’s momentum after the target by a factor 3. We calculate this p factor post-sim-
impact, translating to a momentum transfer efficiency ulation as described in [9].
> 1 which is only weakly constrained due to the un- Impact visualization. The simulation results (point
known target material and porosity. In an effort to con- cloud data) are visualized using the Aardvark open-
strain this B factor, we study the impact of a spacecraft source platform for visual computing, real-time
onto an asteroid similar in size to the secondary body graphics, and visualization developed at VRVis. Aard-
“Didymoon” of the binary near-Earth asteroid (65803) vark is able to handle large simulation datasets in the
Didymos, the target of NASA’s Double Asteroid Redi- terabyte-scale.
rection Test (DART!) and ESA’s Hera? mission con- Results and Conclusions: Figure 1 shows the sim-
cepts. ulated domain of the target along with the impact ejecta

We present results from simulations with our own at 0.4 s after the impact. The velocity components in xyz
3D smooth particle hydrodynamics (SPH) hyperveloc- direction are rgb color coded: with the impact site being
ity impact code. Depending on the impact angle and tar- in the xz-plane, green corresponds to the velocity com-
get porosity, we find B factors between 1.15 and 1.93, ponent perpendicular to the target’s surface.

which is compatible with results obtained in a previous
study and by others using various methods. Real-time
analysis of the simulated impact process and the result-
ing surface features will allow us to align simulation re-
sults with observations of the ESA Hera mission, further
constraining material and porosity parameters of the
mission target.

Method and Simulations:

Impact simulations. We deploy our 3D smooth par-
ticle hydrodynamics (SPH) hypervelocity impact code
(e.g., [10, 12, 5]) that implements elasto-plastic contin- Figure 1: Simulation showing a patch of Didymoon’s
uum mechanics, a fragmentation model for fracture and surface with ejected material 0.4 s post-impact as seen
brittle failure [4, 1], and the P - & porosity model [7]. A from two different viewing angles. See text for details.
tensorial correction as outlined in [11] warrants first-or-
der consistency. Table 1 lists the B factors resulting from different

assumed target porosities and impact angles. The results

!https://www.nasa.gov/planetarydefense/dart 2 https://www.esa.int/Safety Security/Hera
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suggest a systematically smaller momentum enhance-
ment factor for increasingly porous target material. Our
results are compatible with independent studies that pre-
dict the momentum transfer efficiency using different
methods such as scaling models [2, 3, 6] and a different
SPH impact code [8] (see Fig. 2).

Table 1: Results for various impact configurations and
porosities of the target.

Impact angle Target porosity B factor
Head-on (0°) 0% 1.93
Head-on (0°) 20 % 1.52
Head-on (0°) 50 % 1.27
Head-on (0°) 75 % 1.15
45° 0% 1.79
45° 20 % 1.70
45° 50 % 1.49
45° 75 % 1.31

With Hera surveys of the vicinity of the DART
crater down to an expected resolution of 10 cm and
comparing these observations to VRVis-powered visu-
alizations of the simulation outputs, we expect to con-
strain Didymoon’s material, porosity, and internal struc-
ture. Once the final mission parameters of DART are
available, we plan to run higher-resolution simulations
down to the survey-resolution of 10 cm.
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Figure 2: Comparison with existing results (3 corrected
for impact velocity vp: -1 ~v,#!, [6]). References: [6]
Holsapple & Housen (2012), [8] Jutzi & Michel (2014),
[3] Cheng et al. (2016), [2] Cheng et al. (2017).
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