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Abstract

Multiple-run simulations are widely used for investigation of dynamic systems, where they combine varied input parameters and
different kinds of outputs. In this work, we focus on a simulation type that outputs an ensemble of surfaces for each simulation
run. Multiple simulation runs, in this case, result in a set of surface ensembles — a super-ensemble. We propose an advanced data
model, abstract analysis tasks, and introduce an analysis workflow for the exploration of super-ensembles. To address the challenging
exploration and analysis tasks, we present Super-Ensembler, a visual analytics system for analysis of data-surface collections as
super-ensembles. We introduce novel aggregation methods and corresponding visualizations. The aggregation techniques reduce
data complexity by either yielding a super-ensemble of a simplified data type or a conventional surface ensemble. Novel visual
representations include an overview visualization for super-ensembles, 3D multi-resolution box plots, and intersection contours.
Together with standard views, such as scatter plots, parallel coordinates, or histograms, they are integrated into a coordinated multiple
views framework. The newly proposed methodology is developed in a close collaboration with experts from the automotive domain.
We evaluate our approach by means of a case study in the context of gear transmission design. Positive feedback and reported
speed-up of the analysis indicate the usefulness of the presented approach.

1. Introduction multiple-run simulation. Surface-specific and standard visual
representations are brought together using coordinated multiple
views. On-the-fly aggregation can be performed on a structural
level, i.e. from super-ensemble to representative ensemble, or on
the data type, i.e. from surfaces to curves or scalars. We evaluate
the proposed system in an inter-disciplinary collaboration with
experts from the automotive domain. A case study demonstrates
how common analysis tasks can be solved and indicates the
usefulness of the presented approach.

The proposed analysis approach addresses the ambitious task
of visualizing and exploring super-ensembles. The main contri-
butions can be summarized as follows: (1) An advanced data
model called super-ensemble and novel aggregation techniques.
(2) Identification and abstraction of analysis tasks in collabora-
tion with domain experts. (3) A novel analysis methodology for
super-ensembles and derived ensembles. (4) Super-Ensembler,
a visual analytics framework, which addresses the analysis tasks
and integrates newly proposed visualization and interaction tech-
niques.

Simulation is a powerful tool to understand the behavior of
dynamic systems in nature, science, and technology. Depending
on the subject, various types of simulation can be used, which
produce different kinds of output — from simple scalar values
to complex data types. In this work, we focus on a simulation
that generates multiple, related data surfaces as output for a
single simulation run. Several techniques for an analysis of such
surface ensembles have been proposed [1, 2, 3].

Multiple simulation runs can be executed to gain an un-
derstanding of how simulated processes evolve depending on
varying input parameters, thus delivering insights into the sensi-
tivity of simulation models. Existing analysis techniques can be
applied to each of the surface ensembles resulting from individ-
ual runs. However, such an approach does not address relations
between individual ensembles. Some analysis tasks might not
be possible to solve when regarding the output of multiple-run
simulation as a set of independent ensembles. In contrast to
that, we consider the simulation results as a complex, coherent
structure, which we call super-ensemble.

As a consequence, novel analysis techniques are needed. ~ 2. Approach Overview
Tam et al. identify the potential of “’soft knowledge”, which
is only available in human-centric approaches [4]. It includes 2.1. Data Model
the ability to consider consequences of a decision or to infer The simulation considered in this work outputs m related
associations from common sense. For analyzing the relations data surfaces in a single run. A data surface is a 2D scalar field,
between the simulation parameter space and the Corresponding which can be pictured as a height surface over its domain. In
super-ensemble, we therefore pursue a visual analytics approach. ~ our case, the data surfaces represent simulated forces on the

We present Super-Ensembler’ a visual analytics System that tooth flanks of a gear wheel (Figure 1) A data SMrface ensemble
supports the exploration of super-ensemb]es emerging from refers to a set of surfaces, e.g. all data surfaces generated within
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Figure 1: Surfaces are constructed from discretized contact lines, which move
along the tooth flank over time (left). All contact lines at discrete time points #;
form a rectilinear surface grid (right).

one run. Common multi-field data sets originate from different
quantities, e.g. pressure, temperature, and precipitation in mete-
orology. Our scalar fields represent the same quantity, making
them directly comparable. Consequently, height surfaces are a
suitable representation, as differences are directly visible and
features like intersections have a clear meaning.

Executing n simulation runs results in n data surface ensem-
bles of size m. Thus, we investigate an ensemble of data surface
ensembles, which we call a super-ensemble. A super-ensemble
can be represented as a n X m-matrix of data surfaces. Traditional
approaches cannot be applied to this type of ensemble. There-
fore, novel visualization and interaction methods are needed for
exploration and analysis of super-ensembles.

2.2. Aggregation

Due to the data complexity, we provide aggregation at dif-
ferent levels. On a structural level, single surface ensembles
can be extracted from the super-ensemble. At some point of the
analysis, users might be interested in the surfaces resulting from
one specific simulation run. In this case, users can interactively
select the desired simulation run for further analysis, which we
call run-centric approach. The corresponding surface ensemble
is called focus ensemble. For another task, however, users might
need to analyze one specific attribute. As an example, they
want to see how the forces on one single tooth flank behave de-
pending on different gear designs (i.e. simulation runs). Again,
they can manually select the desired focus ensemble, which
belongs to one tooth flank in this case. We call this approach
domain-centric.

A representative ensemble results from each row (i.e. simu-
lation run) or column (i.e. attribute) being summarized by one
single surface. This aggregation is achieved using projection,
where the respective row or column is mapped to one single rep-
resentative surface. An example projection type is the minimum
(maximum, median, average) projection: for each point of the
2D function domain, the minimum (maximum, median, average)
of the entire ensemble is stored in the representative surface.

During the analysis process, certain simulation runs or at-
tributes (and their corresponding surface ensembles) can be ex-
cluded from the analysis. It results in a refined super-ensemble,
which can be treated like any other super-ensemble.

On a data-specific level, super-ensembles with simplified
data types can be derived. The original super-ensemble’s in-
dividual members can be aggregated using projections along
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the axes, resulting in a curve super-ensemble, i.e. each data
surface being represented by a curve. Data surfaces can also be
represented by scalar values, for example the overall maximum,
resulting in a scalar super-ensemble. This could be used to effi-
ciently determine if simulated forces exceed a certain maximum
tolerance on any tooth flank for any gear design.

The concrete aggregation type depends on the analysis cir-
cumstances and task to be solved. Also, not all needed aggre-
gates can be determined in advance, as they dynamically result
from analysis. For these reasons, we enable on-the-fly computa-
tion of aggregates.

2.3. System Overview

We developed the proposed methodology in collaboration
with experts from the automotive industry, where data surfaces
represent the simulated forces on the tooth flanks.

When visualizing a large number of data surfaces it is chal-
lenging to gain a spatial understanding and to identify similari-
ties and differences among the shape of the surfaces. When we
talk about large data sets, we mean super-ensembles contain-
ing tens of thousands of data surfaces. For visually exploring
sets of data surfaces, we propose Super-Ensembler, a visual
analytics system. It makes use of coordinated multiple views,
where surface-specific views are combined with standard views,
such as histogram, scatter plot, or parallel coordinates. Such
a combination supports constant switching between detail and
scalability, offering a powerful opportunity for drill-down.

Figure 2 shows an example configuration for exploring the
results of a gear simulation. Input parameters (usually scalar
values) can be assessed via standard views (Figure 2a). Simu-
lation outputs are displayed in the right column of the system
(Figure 2c). Together with the input parameters, they serve as
a supportive environment for data surface analysis. The main
canvas (Figure 2b) is primarily used for surface-specific views,
which are described in Section 4.

Super-Ensembler supports the analysis of complex relations
in large data sets by integrating visual representations using
linking and brushing as well as focus and context techniques.

3. Related Work

Coordinated multiple views (CMV) support the analysis of
complex relations in large and high-dimensional data sets [5, 6].
A survey on CMV is provided by Roberts [7].

The exploration of simulation input and corresponding out-
put also relates to the field of parameter studies. A recent survey
on visual parameter space exploration is provided by Sedlmaier
et al. [8]. Bergner et al. [9] presented ParaGlide, a visualization
system that allows for exploration and partitioning of parameter
spaces. Beham et al. [10] presented an approach for exploring
relations between parameters of a shape generator and the result-
ing geometries. Pretorius et al. [11] analyze the relationships
between parameter settings for image analysis algorithms and
the corresponding output.

Ensemble data do not originate from simulations only, but
occur in various forms. Ensembles can consist of scalar or vec-
tor fields [12], weather forecasts [13], contours [14, 15, 16],
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Figure 2: An example configuration of the proposed interactive visual analysis system. Simulation input (a), the current main visualization (b), and additional complex
simulation output (c) are displayed in a single window. All views are linked and automatically updated according to brushes, thus supporting an exploration of

relations between control parameters (a) and simulation output (b, c).

3D isosurfaces [17], image segmentations [18], or even vol-
ume data [19]. They are well-known from meteorology, where
repeated simulations characterize the uncertainty of weather pre-
dictions. Wang et al. [20] proposed nested parallel coordinates
to analyze relations between the high-dimensional parameter
space and resulting climate ensembles. While their approach is
based on a single time-dependent quantity, we consider multiple
quantities as output per execution, which are combined into a
super-ensemble.

Several methods have been proposed for visual analysis of
ensemble data. Wilson and Potter [21] provide an overview
of ensemble data characteristics and consequences for visual
analysis. Common approaches dealing with such data are based
on complex ensemble members, but they mainly address ensem-
bles of a moderate size (around 50 members) [19, 17, 12]. In
contrast, we analyze super-ensembles with tens of thousands of
data surfaces as members.

An intuitive approach to visual exploration of ensemble data
is to reduce the complexity by summarizing characteristics via
statistical measures [22]. Potter et al. [3] presented Ensemble-
Vis, which provides statistical aggregation of weather ensembles.
For displaying multiple measures, they combine different visual
representations, e.g. via overlay. We display five measures using
one visualization, which can also be applied to subdivisions of
the member domain. We also allow for on-the-fly derivation
of aggregates other than descriptive statistics. In addition to
ensembles of climate model outputs, Genton et al. [23] ana-
lyzed samples of brain images using descriptive statistics. After
ranking the sample images, they define and visualize compo-
nents similar to a common functional boxplot: a representative
(median) surface/image as well as an inner and outer envelope.

Simulation results from different application domains can be
modeled as surface ensembles. Piringer et al. [1] arrange data
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surfaces, which result from a bearing simulation, as rectangular
icons in a scatterplot-like way. We advance this approach by pro-
viding an arrangement of heat maps that offers better scalability.
Matkovic et al. [2] proposed a multiple-level approach closely re-
lated to our work. It considers scalar values and surface profiles
for aggregation, which is realized per ensemble member. Their
data model directly integrates data surfaces as atomic unit. We
extend the model to super-ensembles and provide aggregation
techniques and corresponding visualizations.

Visualization of surface super-ensembles involves the chal-
lenge of simultaneously displaying multiple intersecting sur-
faces. Intuitively, occlusion can be overcome by rendering inte-
rior surfaces opaque surrounded by (textured) surfaces rendered
translucent [24]. Bair and House [25] studied different grid
textures for visualization of two nested surfaces to improve the
perception of the surface shape. Busking et al. [26] propose
the use of image-based rendering to visualize two intersecting
surfaces, which can even be deformed interactively. Ambiguity
regarding surface intersections is addressed by contours. Alabi
et al. [27] also support the identification of differences among
shapes of surfaces. They derive one composite image from mul-
tiple surfaces by alternatingly chaining slices of the surfaces.
In this way, differences between adjacent surfaces become visi-
ble. However, the mentioned approaches focus on visualizing
only a few intersecting surfaces, while we face the challenge of
visualizing a large number of surface ensemble members.

4. Interactive Visual Analysis of Surface Super-Ensembles

Visual analysis of super-ensembles delivers insights into
large, high-dimensional data sets. It offers the potential for
gaining a thorough understanding of the underlying simulation
model. Remember, that the simulation might consist of hundreds



of runs with hundreds of outputs each, yielding tens of thousands
of ensemble members. Various challenges emerge due to the
complex composition of the data.

4.1. Analysis Tasks and Workflow

Based on a collaboration with experts from the automotive
domain, we identify common analysis tasks, which they face
when dealing with simulation ensemble data. There are two
leading questions: (1) How do outputs change by modifying the
values of control parameters? (2) For which control parameter
settings does the simulation produce a desired output?

We identify specific tasks for the analysis of super-ensembles:

T1: Multi-resolution overview — familiarize with the data.
Develop an initial idea of a suitable analysis workflow.

T2: Characterization — identify characteristics of surface
value distribution, e.g. detect regions exhibiting high values.

T3: Sensitivity analysis — what significance do individual con-
trol parameters have for simulation outputs? How do specific
input parameter values affect the simulation output?

T4: Regions of interest — identify control parameter settings
that result in a desired surface shape. When dealing with
stresses, identify set-ups leading to a uniform distribution.

TS5: Side-by-side comparison — compare one ensemble mem-
ber to another one.

T6: Detailed investigation — investigate single ensemble mem-
bers in detail while preserving the ensemble context.

T7: Flexibility — constantly change the perspective, e.g. be-
tween detail and overview.

Following Shneiderman’s information-seeking mantra ”Overview
first, zoom and filter, then details-on-demand” [28], we introduce

an analysis workflow that enhances the exploration of super-
ensembles and derived aggregates (Figure 3). The global ex-
ploration loop addresses the analyst’s need to constantly switch

between views and aggregations at different levels of detail (T7).
The analysis starts with a multi-resolution overview of the super-
ensemble. It is in turn enclosed in a loop, which enables the

analyst to change the resolution and to refine the super-ensemble

via filtering (Figure 3, left). After having gained a first impres-
sion of the data set, the underlying data can be narrowed for a

more focused investigation (Figure 3, center). The loop at this

stage addresses the characterization task (T2) and enables the

analyst to steer the analysis process by selecting representative

ensembles for visualization. This also involves the computation

of aggregates in the form of curve or scalar ensembles, where

needed. From there, the analyst can also re-enter the overview

loop to get a feeling for the analysis context. To gain a precise

understanding of individual instances or to validate findings,
detailed information can be requested, e.g. the actual data record

(Figure 3, right). Such information might also be a starting point

for another iteration of the global exploration loop.
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4.2. Overview Visualization for Super-Ensembles

At an early stage of the exploration loop, analysts are inter-
ested in exploring overall patterns and correlations that can be
observed throughout the super-ensemble. For this purpose, they
need to gain an overview of the values’ distribution across the en-
tire surface domain (T1). Therefore, it is essential to efficiently
summarize important distribution characteristics (T2). In the
following, we describe visualization and interaction techniques
that support these tasks.
3D Box Plots  Descriptive statistics quantitatively describe
the main features of data [29]. Box plots are a common method
for visually representing such statistics [30]. We construct 3D
box plots across all members to provide guidance for further
analysis (Figure 4a). They serve the user’s spatial imagination
and allow for building up a mental connection between a box
plot and the represented surfaces. When viewing 3D box plots,
only the statistical measures have to be interpreted, without
the need to transfer the features’ positions to 3D space, which
would be required with 2D box plots. A polyhedron, which
corresponds to the interquartile rectangle in 2D box plots, serves
as a simplified histogram within the interquartile range. This
representation is inspired by the histplot [31].

Analysts might need to assess how the surface distribution
behaves in parts of the surface domain. To convey local charac-
teristics, a multi-resolution overview is supported by providing
3D box plots at a number of cells (Figure 4c), which can be
arbitrarily chosen. Orbiting around the scene as well as zoom-
ing towards individual 3D box plots hold the potential to solve
arising occlusion issues up to a certain degree. However, when
strongly increasing the spatial resolution, the interpretation of
box plots is disturbed.

For a more focused overview within a region of interest, the
user can select a particular cell of the surface domain. This
triggers statistics at a higher resolution (T4), realized by further
subdividing the cell. The corresponding 2D box plots for each
new subdivisions are then presented in a separate view. The 2D
box plots also support the multi-resolution approach, allowing
the analyst to flexibly switch between different levels of detail.
2D Box Plots 2D box plots are arranged in a matrix, which
reflects the positions of the corresponding subdivisions within
the 3D box plot view. To provide a spatial orientation, these
subdivisions are highlighted (Figure 4d, left). This helps to
perform a side-by-side comparison between the 2D box plots of
a certain cell and the 3D box plots across the entire domain. 2D
box plots allow for occlusion-free investigation and therefore
form a beneficial complement to 3D box plots.

For optimal usage of the screen space, all 2D box plots are
of the same size. As we want to emphasize both low values and
high values — one of them as desired, the other one as undesired,
depending on the objective — we choose a cold-to-warm color
scheme to encode the statistical values (Figure 4d, right). It
provides similar visual emphasis for both categories [32] and
makes use of an intuitive interpretation, while being colorblind-
safe. As 2D box plots are not arranged within a global scale,
assessing their ranges takes cognitive effort. To simplify their
interpretation, we provide an indicator for the covered range
next to each box plot (Figure 4e, left).
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From considering the overview visualizations, the analyst
might have detected simulation runs or attributes that she does
not want to be included in the following analysis process. For
this purpose, she can refine the super-ensemble by filtering and
either proceed with a more focused analysis or consider the
overview visualizations again to assess the changes.
Intersection Contours  Assessing the data surfaces’ original
shape is helpful for a thorough understanding of the investigated
system. Despite occlusion issues, the domain experts insisted on
being provided with data surfaces displayed in a 3D coordinate
system. We provide intersection contours as an overview step
prior to a detailed analysis of surface shapes.

These contours are computed per surface as intersections
with a horizontal cutting plane and open up an additional per-
spective on the data. They are simultaneously displayed in two
different ways: (1) the contours are drawn onto the cutting plane
in a 3D surface display (Figure 5, left), and (2) they are pre-
sented in a separate 2D display (Figure 5, right). In this way, the
spatial context information is preserved in the surface display,
while the analyst performs a more precise investigation of the
contours in a separate display (T5). By scrolling through the
slices, the analyst can get insights into the distribution of sur-
faces in an ensemble, in particular when parts of surfaces are not
well distinguishable. Remember that a target ensemble might
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Slice:9

Figure 5: Intersection contours drawn onto the cutting plane in the 3D surface
display (left) and displayed in a separate view (right). Brushed contours are
colored, while context is depicted in gray.

contain thousands or even tens of thousands of data surfaces.
Using intersection contours, a large number of members can be
depicted simultaneously without limiting visual analysis.
Aggregated Surface Profiles Intersection contours alone
open up a rather limited perspective for a highly scalable overview.
In addition, individual ensemble members can be aggregated
along one independent variable, resulting in one curve profile per
data surface as described by Matkovié and colleagues [2] (Figure
2b, bottom). In the gear design context, surface profiles were



extensively used to evaluate whether the tooth flanks tended to
exhibit a phenomenon called edge-loading, which might cause
gear failure or damage (T6). From there, the analyst can also
intuitively drill down to a subset of surfaces with desired or
undesired distributions for further analysis: either in more detail
by entering the characterization loop (Figure 3, center) or by
re-entering the overview loop (Figure 3, left).

4.3. Visualization of Data in Focus

To narrow the search space to a region of interest, the analyst
can select a focus ensemble, compute an appropriate represen-
tative ensemble, or simply use brushing to define a set of data
surfaces for further investigation. Brushing is in particular useful
when the significance of certain control parameters for simula-
tion output is to be analyzed (T3).

According to the focus and context principle [33], the selec-
tion of a data subset results in an update of all current views.
Intersection contours and surface profiles update by highlighting
the corresponding contours and profiles. For 3D box plots, the
statistical measures are re-computed based on the brush (Figure
4b). Context box plots help to establish a relation between the
brushed data in focus and the entire data set. 2D box plots also
update their appearance according to the brushed data subset.
Box plots representing the brush are displayed less widely to not
occlude the context 2D box plots in the background. To enable
a direct comparison between brushed data and context data, the
statistical measures corresponding to the selection are depicted
relative to the context box plot’s range (Figure 4e).

In the following, we will describe additional visualizations

that are particularly suited for an analysis of data subsets as well
as details on-demand.
Heat Maps At this stage of the exploration loop, the analyst
is ready to analyze and compare instances of surfaces themselves.
This implies that corresponding visual representations are of a
certain size to be able to identify regions of interest. Therefore,
we suggest to use such visualizations at an advanced stage of
the analysis, where data records have already been drilled-down
to a reasonable number. At this stage, we integrate heat maps
into the system, because they do not suffer from occlusion and,
depending on the color encoding, provide fast perception of
regions of interest. Analysts can choose a heat map for in-depth
analysis of a single surface or compare multiple data surfaces
using side-by-side heat maps.

4.4. Visualizing Details On-Demand

To round off the analysis and to verify the findings, one
might request details on individual surfaces (T6). For example,
the exact values for statistical measures in 2D box plots are
displayed when hovering over the corresponding rectangle. Such
details are in particular important, when multiple similar surfaces
should be compared to identify the best-suited one (TS5).
3D Surface View At an advanced stage of the analysis, the
analyst needs to get an idea of the actual shape of surfaces. For
this purpose, a 3D surface view is provided. This was impor-
tant for our domain experts, as it helped to build up a mental
image of the surfaces’ shapes and their positions. Occlusion
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issues are addressed by rendering surfaces with a transparency
that depends on the distance to the viewer (Figure 5, left). It
enables the analyst to view the interior of a surface ensemble
(T2). Perceiving and comparing shapes of tens or hundreds of
potentially intersecting or nested surfaces might still be chal-
lenging. Therefore, the 3D surface view will only offer benefits
when used with a limited set of data surfaces.

Data surfaces exceeding a certain threshold, e.g. a tolerance,

can be brushed using the cutting plane in the 3D surface display
(T4). All surfaces that intersect with the plane are selected. To
exclude surfaces, another cutting plane can be used, such that
only surfaces having a peak in between both planes remain. Both
planes can be hidden to not disturb the analysis.
Data View Visual representations emerge from a mapping
of the underlying data [34] and do not provide access to the
raw data. To draw conclusions on which values to choose for
simulation input parameters, analysts need to derive exact values
as an analysis result (T6). We therefore provide a data view,
which shows the full data table records for a brushed set of
surfaces.

5. Case Study — Loaded Tooth Contact Analysis

Gears are of central importance for a wide range of mechan-
ical devices. Their design affects key functions like durability,
efficiency, noise and vibration emission. To ensure a valuable
performance, gears have to be highly accurate and reliable. In
the case of fatigue or failure, they may cause great damage
to the enclosing machine. Designing gears such that low and
uniformly distributed stresses arise at the tooth flanks highly
contributes to the prevention of failure. To establish a beneficial
gear design, it is essential to gain an understanding of dependen-
cies between gear designs and the resulting stresses. Interactive
visual analysis helps to fulfill this task.

5.1. Simulation and Resulting Data Set

Various parameters define the way in which gear operation is
performed. We utilize multiple-run simulation for investigation
of different gear designs. These forces are simulated using the
AVL Power Unit [35], which is used by the domain experts in
their daily routine. The simulation model consists of two spur
gears, which are mounted on parallel shafts.

The data set resulting from simulation consists of scalar
input parameters (representing gear design and operating condi-
tions) and the corresponding contact stresses for the entire gear
wheel. For each simulation run, we process the output of the
simulation solver, such that we yield gear stresses per tooth flank
represented by one data surface each. The simulation solver
computes gear stress values at a discretely sampled contact line
that moves along the tooth flank during operation. These refer-
ence points build up a rectilinear grid (Figure 1), which forms
the 2D surface domain. The simulated values at each of the grid
points form the actual data surface. The data surfaces resulting
from multiple simulation runs make up the super-ensemble, with
’gear design’ along the rows and ’tooth flank’ along the columns.
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exhibiting a desired force distribution (c, d). Inappropriate parameter settings (e)
lead to large and sharp contact forces (f).

5.2. Interactive Visual Analysis of Teeth Contact

Profile modifications are applied to a gear design to improve
the gear mesh behavior in terms of the contact load at the mating
flanks. Irregularities, such as misalignments and operational
clearance, are compensated to avoid high local edge and tip load-
ing. The analysis follows two steps to evaluate how interactive
visualization contributes to a deeper understanding of gearing
systems and helps to validate design improvements.
Familiarization — Standard Gear Design Process As a
first step, the experts analyze a well-known case and familiarize
with the visual analysis techniques by reproducing findings from
their practical experience. Five standard gear profile modifica-
tions with states applied and not applied are combined to 32
different gear designs. The corresponding data set contains 672
data surfaces, which are arranged as 21 or 32 ensembles, depend-
ing on the chosen approach. To evaluate a gear design, engineers
need to assess its quality and, if it is not sufficient, identify pro-
file modifications that should or should not be applied to achieve
the target requirements (Figure 6).

Maximum surface profiles (Figure 6a) are used to gain an
overview of the distribution of forces (T1). They also convey an
overall impression of whether edge loading, e.g. high force val-
ues at the left or right border of the gear width, occurs. As gear
stresses are to be minimized, the profiles exhibiting low contact
forces are brushed (T4). The corresponding control parameters
are depicted using parallel coordinates (Figure 6b). The shown
design variants have four profile modifications in common and
differ only with respect to the tip relief applied to the gear (T3).
Occlusion-free and intuitive side-by-side comparison (T5) of
the two designs is provided using heat maps (Figure 6¢ and d).
One of the heat maps depicts a desirably smoother tooth contact
(Figure 6d). The color scheme was chosen to meet the experts’
standard color scale, to which they are used. In an analogue
way, gear designs can be identified, which might lead to gear
failure. Applying crowning to the pinion without applying the
other profile modifications (Figure 6e) leads to large contact
forces (Figure 6f), which may cause flank surface damage (T3).
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Figure 7: : Interactive exploration of the design space. Selecting desired patterns

e)
(a to ¢). Reverse check, selecting identified ranges and viewing intermediate
results as 3D box plots (d). Final results of three desired profile corrections are
shown using heat maps (e).

These results agree to the practical experience and confirm the
usefulness of an interactive visual analysis of the tooth contact.
Advanced Gear Design Process In a second step, the mat-
ing of gears under more realistic conditions is analyzed. The
simulation consists of n = 900 runs, which are characterized
by three different speed and load conditions and seven varied
profile modifications (for the meaning of n and m see Section
2.1). We analyze the arising forces on all tooth flanks of one
entire gear wheel, leaving us with a data surface ensemble of
size m = 21 for each simulation run. Consequently, the entire
data set is composed of 18900 data surfaces. Surface profiles are
used to brush the desired range of forces, in which edge loading
is reduced (Figure 7a, bottom left). The selected variants still
exhibit increased contact forces in the middle section of the gear
width (T2). Such undesired design variants are excluded by us-
ing a subtract brush (Figure 7a, bottom right). In the end, three
design variants with desired characteristics are selected. They
can be investigated in detail (T5) to verify the resulting force
distributions (Figure 7b). The corresponding reduced design
space is depicted in the parallel coordinates plot (Figure 7c).
The green rectangles indicate the preferable ranges of profile
corrections that lead to a desired tooth contact behavior.

To validate the results described above, a reverse check is per-
formed, by brushing the identified preferable profile corrections
in the parallel coordinates plot. This results in 27 gear designs,
which are depicted by 3D box plots for statistical overview (Fig-
ure 7d). As there are differences in the maximum forces for
different parts of the tooth flank, one can conclude that some of
the gear designs still seem to exhibit undesired behavior (T2).
In the previous analysis, those were not considered, because the
corresponding surface profiles were subtracted from the brush.
By repeatedly refining the brush in the parallel coordinates and
considering overview visualizations like the 3D box plots (T7),



the design space can be narrowed to the most preferable combi-
nation of profile corrections. The result is validated by viewing
the force distributions on all pinion teeth for the identified gear
design under the three different speed conditions (Figure 7e).

6. Discussion

The analyst is constantly faced with a trade-off between de-
tail and scalability. The domain experts stated that traditional
tools hold difficulties when investigating details, while keeping
an eye on the development of contact patterns within the entire
system. We provide views that support tasks at different levels
of detail. No view alone is sufficient, but a simultaneous in-
vestigation of different views holds the potential for a thorough
exploration of super-ensembles.

The 3D box plots were primarily used for investigating the
gear stresses in a specific region of the tooth flank. This is
important when engineers want to influence specific areas of the
contact pattern, e.g. the edges of the tooth flank to reduce edge
loading. Although 2D box plots would suffice for providing the
statistical measures, 3D box plots better blend in with the 3D
context. In spite of occlusion, the domain experts appreciate the
more meaningful impression that 3D box plots convey.

For building up a mental model of the distribution of ensem-
ble members, the 3D surface display is of crucial importance.
It was extensively used at different stages of the analysis. The
domain experts stated that, in the long term, the 3D display will
be an essential support for the assessment of gear contact results.
Aggregated surface profiles also significantly contributed to the
analysis; they were primarily viewed to gain an initial impres-
sion of the distribution’s characteristics, e.g. whether undesired
edge loading occurs. The domain experts also used the surface
profiles to exclude surfaces exhibiting such phenomena from
further analysis. In contrast to that, the intersection contours
were not extensively used by the experts.

Although we carefully chose the color-coding scheme for the
heat maps, the domain experts insisted on using their standard
color scale. The benefit of lowering obstacles by providing
common techniques might exceed the benefit of novel techniques
with a steep learning curve. Heat maps were mainly used to
compare data surfaces and therefore to identify the most suited
gear design from a number of candidates. Although we propose
a CMYV system that might not be intuitive for domain experts,
they were relatively quickly familiar with it. Parallel coordinates
were extensively used for accessing control parameters, which
is rarely reported.

To summarize, the domain experts highly appreciate the
novel methodology. Conventional tools used in the automotive
domain do well in side-by-side comparison of selected design
variants, but fail to support an overview of a large number of
variants to identify the most important control parameters. Tra-
ditional analytical methods follow a rather sequential process.
They strongly rely on the experts’ working experience regarding
the implications of certain parameter variations. Depending on
trends and patterns that are identified in simulation output, the ex-
perts vary individual design parameters to steer the results in the
desired direction. Design parameters like the type of gearing, the
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number of teeth, or the modulus can be relatively easily derived
from the requirements of the target gear application (e.g. axis
distance or transmission ratio). However, there are parameters,
for example different profile modifications like bending of the
tooth flank, whose implications on the arising stresses are more
subtle and exhibit quite complex cross-relations. Using intuition
and their working experience, domain experts might be able
to narrow the value range of such parameters, but determining
precise values might be difficult. Our approach provides an effi-
cient way to perform such fine-tuning by smoothly supporting an
explorative sensitivity analysis. When a suitable design has been
identified, the corresponding exact values for all involved param-
eters can be accessed to be used for the actual manufacturing
process. According to both experts, the described visualization
methods significantly add value to state-of-the-art methods for
gear contact analysis. They reported that the newly proposed
techniques simplify and at the same time deepen the under-
standing of correlations between gear design and gear stresses.
Besides the domain of gearing, the presented methodology is
widely applicable to other domains like meteorology, engineer-
ing, or lighting design, where data sets can be represented as
super-ensembles.

7. Conclusion

Due to data complexity, the analysis of an ensemble of sur-
face ensembles is challenging. In this paper, we introduce Super-
Ensembler, a visual analytics framework to support the analysis
of super-ensembles. An advanced data model adequately repre-
sents the underlying data. To support the identified analysis tasks
and workflow for exploration, novel aggregation techniques and
corresponding visualizations are integrated. The methodology
has been developed in collaboration with experts from the do-
main of gearing systems. For evaluation, we performed a case
study, where gear contact stress during operation was simulated.
It revealed not only an analysis speed-up, but the experts were
also enabled to solve tasks that go beyond the possibilities of
conventional tools, in particular related to overviewing a large
number of design variants.

In the future, we will integrate the frequency domain as an
additional feature for noise and vibration analysis. The analysis
of gear contact phenomena would also benefit from integrating
several physical quantities, e.g. normal force, sliding velocity,
and deformation, to be investigated simultaneously. Finally,
to qualitatively assess the Super-Ensembler’s potential for the
gearing domain, a more formal user study with several domain
experts has to be carried out. This is complicated as the experts
are sparsely settled and have a tight schedule.
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