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Abstract

Until now a lot of visual analytics predominantly delivers qualitative results—based, for example, on a continuous
color map or a detailed spatial encoding. Important target applications, however, such as medical diagnosis
and decision making, clearly benefit from quantitative analysis results. In this paper we propose several specific
extensions to the well-established concept of linking and brushing in order to make the analysis results more
quantitative. We structure the brushing space in order to improve the reproducibility of the brushing operation,
e.g., by introducing the percentile grid. We also enhance the linked visualization with overlaid descriptive statistics
to enable a more quantitative reading of the resulting focus+context visualization. Additionally, we introduce
two novel brushing techniques: the percentile brush and the Mahalanobis brush. Both use the underlying data
to support statistically meaningful interactions with the data. We illustrate the use of the new techniques in
the context of two case studies, one based on meteorological data and the other one focused on data from the
automotive industry where we evaluate a shaft design in the context of mechanical power transmission in cars.

1. Introduction

Interactive visual data exploration and analysis has become
an indispensable complement to automatic analysis tech-
niques. Still, we see quite often that analysts prefer compu-
tational techniques for a few important reasons.

First, focus+context visualization is often only qualitative
by nature. As compared to the context, the data subset(s) in
focus are shown in a different color, or in another visualiza-
tion style [HauO6], resulting in only approximate readings
of such views. In certain application cases, including deci-
sion making, for example, “hard”, quantitative facts are of-
ten useful (think of a “no go”-decision, if the p-value of a
statistical test is above a predefined threshold).

Another reason is that results from interactive procedures,
like most of traditional visual analytics, often seem to lack
a sufficiently good reproducibility. Redoing a visual analyt-
ics session, for example, where linking and brushing is used,
will most likely not result in exactly the same result. This
is due to small variations in the placement of the brushes,
for example. A recent study by Kandogan et al. [KBHP14],
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based on 34 in-depth interviews, documents this situation
clearly in the context of business intelligence. It seems obvi-
ous that extensions to visual analytics, which enable repro-
ducible and quantitative results, may become key to a further
strengthened deployment of interactive visualization in ana-
Iytics applications.

In this paper, we contribute several specific extensions to
the well-established concept of linking and brushing in co-
ordinated, multiple views. This amounts to the first major
collection of techniques targeted specifically towards repro-
ducible and quantitative visual analytics.

With respect to brushing, we describe several particular
extensions, including percentile brushing and Mahalanobis
brushing, i.e., two techniques that support reproducibility. In
abstract terms, we discuss the brushing space and how it can
be structured for improved reproducibility.

With respect to linking, we introduce further extensions,
including the integration of descriptive statistics, which
enables a quantitative reading of linked views with fo-
cus+context visualization. We also support the user during
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the visual analysis by reducing mental load during brush-
ing, by allowing him to record a brush path. The brush can
then be animated, i.e., reproduced repeatedly, and the user
can pay all attention to the linked views. Additionally, we
provide animated transitions in linked views in combina-
tion with a descriptive statistics overview. We also introduce
the relative difference plot as a novel way of describing the
history of linked data statistics. We illustrate the use of the
new techniques in the context of two case studies, one based
on meteorological data and the other one focused on data
from the automotive industry. Further we explain, in which
way our results are reproducible and quantitative. We con-
clude by discussing benefits and limitations of the current
approach and outlining selected plans for future work.

2. Related Work

The concept of linking and brushing is key to interac-
tive visual analysis (IVA) [WHI14, KH13]. It is modeled
as an interactive and iterative method to reveal insight
into large and multi-faceted datasets. The term brush-
ing was defined by Becker and Cleveland [BC87] and
different brush shapes were proposed, including rectan-
gles and circles [CM88]. Martin and Ward researched N-
dimensional, multiple, fuzzy, and composite brushes. They
employed brushing for the analysis of multi-dimensional
data in the XmdvTool [War94]. The user configures compos-
ite brushes by applying logical operations and expressions
(e.g., with AND, OR, XOR, and NOT) [MW95]. Doleisch
et al. [DGHO3] introduced a feature definition language for
the specification of multi-dimensional and/or complex fea-
tures, using logical combinations of brushes in coordinated,
multiple views. The concept of compound brushing, devel-
oped by Chen [Che03], helps in describing many existing
brushing techniques and it is also useful for exploring new
techniques. Animation is also used in interactive visual ap-
plications for helping users to follow changes in the visu-
alization [HRO7,ROC97, BPF14]. However, animation must
be used with caution, since it could lead to perceptual errors,
and can slow down the analysis [RFF*08].

Brushing techniques are commonly categorized into three
groups, according to the space in which the selection is be-
ing performed: screen, data and structure brushes [FWRO00].
While screen-space techniques traditionally limit the shape
of a brush to two dimensions, data-space techniques per-
mit brushes with dimensionality greater than two. For ex-
ample, the N-dimensional brush [War94] provides insight
into a spatial relationship over N dimensions. The third
group extends the brush metaphor to structures. It encom-
passes structure-space techniques [FWRO00] which are based
on structural relationships between data points, such as clus-
terings, orderings, groupings, etc. Structure-space brushing
techniques are particularly useful for datasets with natu-
ral and imposed structures. In this paper, we introduce the
Mabhalanobis brush as a new structure-based brushing tech-

nique. It takes the underlying data distribution into account,
while specifying the brush in screen space. Traditionally,
brushing has been performed unconstrained — brushes can
be created anywhere in the view and the analyst can move or
resize them freely. As an addition to the free (unconstrained)
brushing, and to support reproducibility, we now introduce
an alternative mode that we term constrained brushing.

Visual analytics, especially the field of analytic prove-
nance, has been interested in reproducible methods for
several years. Examples include the work of Gotz et
al. [GWL™10] on history keeping in the Harvest system and
the work of Silva et al. [SFSA10] on provenance support in
the VisTrails system. This application systematically main-
tains provenance in the data exploration process by captur-
ing all the steps which have been taken during an interactive
visualization session. Yang et al. [YXRWO7] developed the
Nugget Management System (NMS) for the housekeeping
of user findings, called “nuggets”. They consequently man-
age nuggets, e.g., by organizing them in an intuitive manner.
These approaches, in general, focus on the reproducibility of
the whole analysis session. In our work we primarily focus
on the reproducibility of the brushing operation itself, being
an important part of the overall interactive visual analysis.

Up to now, not much related work is available on quan-
titative visual analytics. Chen [Che03] showed how to en-
able analytical filtering through the addition of the quantile
range-filter for one variable to validate or filter data selec-
tions. In our work, we contribute constrained brushing us-
ing a percentile-derived grid as a related extension. This
supports analytical tasks that are ranking-based (instead of
value-based). Kehrer et al. [KFH10] integrated statistical ag-
gregates along selected, independent data dimensions in a
framework of coordinated, multiple views. Brushing partic-
ular statistics, the analyst can investigate data characteris-
tics such as trends and outliers. Haslett et al. [HBC*91] in-
troduced the ability to show the average of the points that
are currently selected by the brush. Based on this idea, sum-
marizations of the data are commonly used as a representa-
tive information for clusters in hierarchically organized large
datasets [Shn92, FWRO00]. We also use summarizations, in
the context of brushing, and show several descriptive statis-
tics in linked views, in a table, as overlay or in combination
with traces from brushing.

3. Quantitative and Reproducible Linking&Brushing

In the following, we first discuss in which way standard link-
ing and brushing is qualitative (as opposed to quantitative
analytics) and why there are challenges with reproducibility.
Then, we provide a detailed description of our contributions.
In order to illustrate the new techniques, we visualize meteo-
rological data from about 300 weather stations in California
[NOA14]. This dataset contains geographic information and
temperature and precipitation values.

The qualitative character is, in fact, a critical strength of
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visual analytics, since it naturally harmonizes with the inte-
gration of a human in the analysis loop. After spotting a data
subset of interest in the visualization, interactive brushing is
used to mark up this data subset, directly and interactively
in the view. All linked views get immediately updated and
a consistent focus+context visualization is generated. How-
ever, linking&brushing provides mostly qualitative insight
only, and it is not 100% reproducible.

Firstly, the brushed data subset is always highlighted in all
linked views, while the rest of the dataset is shown as context
(differently colored, smaller, accumulated, etc.). This results
in only approximate readings of such views. The following
example illustrates this situation: A typical result from stan-
dard IVA is something like “Using linking&brushing, we see
that low values of dimension x [as brushed in view A] are
correlated with high values of dimension y as apparent in
the linked focus+context visualization [view B].” The mean-
ing of “low” and “high” remains vague/relative. A compu-
tational data analysis would usually put a number on such a
relation — maybe a Pearson correlation coefficient. Clearly,
the brushed and linked visualization also provides additional
information about the relation between x and y. It indicates
if the relation is linear or not, for example, and this is highly
useful. For decision making, however, “hard”, quantitative
facts are often more valuable.

Secondly, it is typical in brushing that users select freely
what they deem interesting. Considering a rectangular brush
on a scatterplot as an example, the user chooses an arbi-
trary point as the top-left corner of the brush and then ex-
tends the brush-rectangle to the desired size. Due to the
high-resolution of the visualization, and the correspond-
ing interface technology it is highly improbable that an at-
tempt to exactly recreate such a brush will succeed. This
results in challenges with respect to the reproducibility of
exploratory visualizations. Up to now, a possible way for
repeating an exploratory task was to save the complete his-
tory, by using a provenance management system such as Vis-
Trails [SFSA10]. In our work, we think about the reproduc-
tion of IVA results after they have been documented, e.g., in
areport. A typical example would be the following “We look
at the screenshot of view B and we see that the highlighted
data are linearly correlated. From the given textual descrip-
tion we know that the 25% lowest values of dimension x
were selected in view A. After an update of the dataset (with
additional data points, for example), we wish to swiftly re-
produce the reported analysis, i.e., to brush the 25% lowest
values of dimension x in view A and compare the updated
linked view B with the screenshot in the report.” With stan-
dard IVA, this is only approximatively possible. Most auto-
mated, computational approaches, however, will score very
well on reproducibility.

In the following, we describe how we structure the brush-
ing space in order to make brushing more reproducible. Then
we describe how we support the interpretation of linked
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views by integrating descriptive statistics. Finally, after pre-
senting the case study with domain experts, we discuss pos-
sibilities for further development.

3.1. Structured Brushing

In addition to standard brushing, which we call uncon-
strained (unstructured), we suggest as a complement con-
strained and automatic brushing. The brushing space is
structured with respect to the anchoring of the brush, its ex-
tent, and the movement of the brush. Table 1 describes ex-
amples of possible solutions for (partially) constrained and
(semi-)automatic brushing. Furthermore, two new brushes,
the percentile brush the Mahalanobis brush are two concrete
suggestions of how to realize an advanced brush, based on
the structured/informed brushing space (see below).

Snap-to-Grid Brush. As in drawing programs, we can in-
troduce a snap-to-grid option for brushing. This functional-
ity is a useful mechanism to confine brushing to reproducible
shapes that also can be interpreted quantitatively. A regular
grid and the snap-to-grid functionality also works for cat-
egorical data. We can require that brushes are anchored at
grid points and we can confine the extent of brushes to cor-
respond to grid cells. For example, if we define a regular
4 x 4 grid, and we create a brush in the bottom-left grid cell,
then we instantly know quantitatively that we have selected
the [0%,25%)] interval on the x axis, and the [0%,25%] in-
terval on the y axis (Figure 1 brush (a)). If we constrain also
the movement of the brush to allow only a vertical move-
ment and activate the snap-to-grid functionality, only prede-
fined intervals will be taken by the moving brush. Even an
imprecise interaction in the brushed view will result in an
exact, quantitative brush movement. This allows the user to
concentrate on the linked view, knowing exactly which inter-
vals are selected anyway, without the need to pay attention
to value-accurate brushing.

Percentile Grid Brush. With the help of descriptive
statistics, it is usual in (computational) data analysis to ei-
ther do a value-based analysis, or a rank-based analysis.
The latter could, for example, be enabled through quan-
tile filters [Che03] or statistical estimators [KFH10]. Hence,
we suggest to also provide brushing opportunities which
match these analytics perspectives. Using a regular grid cor-
responds to a value-oriented perspective. Alternatively, often
arank-based analytics perspective is also very useful. An ex-
ample here would be the Spearman correlation [Spe87]. In-
stead of selecting all items that correspond to a certain range
of values, we are interested in a certain number of data items,
e.g., the top 10% of all data items. If we define the grid so
that each division on an axis contains a certain percentage of
the items, we create a percentile grid. Each vertical and each
horizontal strip of the scatterplot shown in Figure 1(B), for
exemple, contains exactly 25% of the data. Brushing in the
snap-to-grid mode has a different meaning then. Brushing all
left-most cells, snapped to a 25% percentile grid, we know,
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Brush Anchoring Brush Extent Brush Movement

uncon- The user initiates the brush anywhere in ~ Any extent of the brush is possible  The brush can be moved
strained | the view, for example, on a scatterplotby  and brush boundaries can be mod-  freely.

gular brush at an arbitrary position.

specifying the top-left corner of arectan- ified freely.

con- A “snap-to-grid" functionality is used The size of the brush can be If moved, the brush as-
strained | to constrain the anchoring of brushes to  adapted in discrete, predefined sumes only grid-aligned

grid vertices. steps only. positions.

automatic| The user specifies a particular brush  The brush resizes itself automati- The brush moves auto-

parameter, for example, a data-related cally due to certain constrains, for —matically, for example,
property so that the brush is positioned example, maintaining that a certain ~ following a user-defined
automatically. number of data points is selected. animation procedure.

Table 1: Structuring the brushing space.
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Figure 1: Overview of the extensions for structured brushing. A: A scatterplot with a regular 4 x 4 grid (value-based). B:
A scatterplot with a percentile 4 x 4 grid (rank-based). C: A scatterplot with the 25% percentile brushes. D and E: Parallel
coordinates with a 4 x 4 grid (rank-based) which show the data distributions in each dimension.

again quantitatively, that we have selected the 25% lowest
values with respect to the dimension that is mapped to the
horizontal axis (Figure 1 brush (¢)). Moving the brush along
the grid from left to right, then in each step the brush would
select the next 25% of all items. The grid implicitly reveals
also some insight into the data distribution as illustrated in
Figure 1(D). The analyst may benefit from the grid even if
the constrained brushing is not enabled. The grid can, e.g.,
assist the navigation of the brush over the presented data.

Percentile Brush. The percentile brush constrains the ex-
tent so that the brush always contains a predefined num-
ber of items, like 10%. The brush can be moved freely, or
snapped to a conventional grid, or to a percentile grid also.
When moved, the extent of the brush is adapted continuously
so that it always selects the predefined number of items. In
a scatterplot, we suggest two standard shapes for realizing
percentile brushes, i.e., the rectangular and the circular per-
centile brush. The rectangular brush is easy to interpret in
the scatterplot. When creating the brush, the user can decide
whether the brush considers the data distribution in the hor-
izontal or in the vertical dimension. Figure 1(C) shows two
25% percentile brushes (m, n) created over the horizontal di-
mension. The brush (¢) in Figure 1(B) selects the lowest 25%
using the snap-to-grid, which is equivalent to the brush (m)
in this case. Note however, that the brush (m) can be moved

freely in the horizontal dimension, while the brush (c¢) can be
moved only between grid positions. The circular percentile
brush selects a specified number of items in the vicinity of
a user-specified point, i.e., from the center of the brush, see
Figure 1(A) and brushes (e) and (f). If the snapped circular
percentile brush (e) is moved it jumps from one grid vertex
to another one (with the center snapped to a grid vertex). In
a parallel coordinates plot we use only the one dimensional
percentile brush over the individual axes Figure 1(E).

Mahalanobis Brush. The percentile brush changes its ex-
tent, but keeps its shape, the circular brush changes its ra-
dius but remains circular. Dependent on the data distribu-
tion, this is sometimes not the most useful behavior. The
Mahalanobis distance [Mah36] is a metric, which takes the
data distribution into account. The Mahalanobis distance for
two points X and ¥, both from the same distribution with co-

-

variance matrix C, is given by ((¥ —7)TC~! (% — 5)’))% In
a two-dimensional case (as in the scatterplot), equidistant
lines around a point will be ellipses with the axes corre-
sponding to the principal component directions of the data.
If we compute the percentile brush using the Mahalanobis
distance instead of the Euclidean distance we get the Ma-
halanobis brush and the brush accommodates itself to the
underlying data distribution. Depending on the user pref-
erences, the data distribution is calculated from the whole
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dataset or from a local data subset D. The size of this refer-
ence subset is given as the percentage of data points from the
whole data set, parameter m,;. Depending on this value, the
Mabhalanobis brush will be more or less sensitive to the dis-
tribution of the data near the center of the brush. The whole
algorithm for computing the Mahalanobis brush is shown
in Algorithm 1. Figure 1 (A) shows two 10% Mahalanobis
brushes (g, h). Note that the shape adapts to the data distri-
bution as the brush is moved. It is still a rank-based brush,
selecting always a predefined number of points, of the clos-
est possible number as noted for the percentile brush. Alter-
natively, we could transform the data space and use the pre-
viously explained percentile brush. Such an approach, how-
ever, would make the data interpretation more complicated.

Data: all data in the horizontal and vertical dimension,
P — mouse position, percentage n — of all points
to be selected, percentage m, — of all points
forming the basis for metric computations, vector
d - of data points closest to point p

Result: 77 — vector of all brushed data points

/* Step 1l: computing the local

Mahalanobis metric. */
while percentage of points in the subset D < mg do
‘ Increase size of subset D by adding nearby points;
end
Compute covariance matrix C using D ;

-

d = compute Mahalanobis distances(j, D, C) ;

/* Step 2: aspect ratio and rotation
of the brush ellipse according to
an eigen—analysis of d. */

while percentage of points selected by the brush < n do
Increase the size of the brush and associate the

contained data items with m;
end
Algorithm 1: The pseudo-code of the Mahalanobis brush.
The main steps are. Step 1: We use a rectangle-shaped or
circle-shaped area for selecting a data subset D. The initial
size of the area varies depending on the distribution around
p. We start with selecting 1% of all data points. Step 2:
We use the eigenvalues to define the rotation angle for the
ellipse which represents the Mahalanobis brush m_brush.

Animated Brush. Once the user knows, how the brush
should be moved in order to analyze the data, an animated
brush can be defined. For example, when the user is in-
terested in observing changes in several linked views, the
brush has to be moved over the same path repeatedly in or-
der to study possible correlations. The animated brush can
save a lot of time in this case. We enable path storing for
different brushing techniques. This includes constrained and
unconstrained brushing. Two types of a path recordings are
considered in this paper. Firstly, the user can freely draw a
brush path. As an example, the user creates a constrained
brush, snapped to the first cell in the horizontal dimension
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of a 10% percentile grid. While the brush is moved hori-
zontally across all adjacent grid cells, the positions of the
brush and the brushed data points are saved in each step.
Secondly, the user defines the start and the end position for
an unconstrained brush, and a number of frames to be gener-
ated in-between. The brush is then interpolated linearly. The
user can also insert additional key frames and the brush is
linearly animated between those. This is a complementary
solution, when compared to completely free brushing. The
brushing session can be automatically replayed, following
exactly the same positions, extents, and brushed data. This
allows the user to solely focus on the linked view(s). The
scatterplot in Figure 2 (top-left) shows three key frames of
the recorded animation. The start key frame and the end key
frame are represented with dashed lines. This brush updates
its position and moves along the created trajectory as the
animation proceeds. The user can pause an animation and
move the brush away from the defined path and/or continue
the animation from the paused position.

3.2. Quantitative Linked Views

Interactive visual analysis is highly effective if information
about relevant relations between different aspects of the data
have to be revealed quickly. However, the qualitative insight
by linking&brushing is not always the best help. Further, if
the relations are complex, it is usually not easy to under-
stand the trends and patterns. Even if we pay full attention
to the linked view(s), we still need other methods to support
the mental image creation and to quantify the analysis re-
sults. With a better understanding of what is happening on
the brushing side (cf. extensions as described in section 3.1),
we also aim at a better understanding of the linked side. As
analysts need quantitative results, and statistics can provide
these, a logical step is to enhance the linked views with ad-
ditional descriptive statistics about the brushed data.

One of the first ideas to support IVA with statistics from
the brushed data comes from Haslett et al. [HBC*91]. They
computed the average on a local basis and showed the result
as Moving Average trace added to the Trace View. The cen-
ter of the data is certainly the most commonly used statistical
measure in data analysis. We compute three different center
points: the median, the mean, and the midrange (the value
exactly between the minimum and the maximum). Addition-
ally we determine the total spread, and the spread based on
the standard deviation. Estimating the center and spread, we
already have a first useful summarization of the data. De-
pending on the task, the user configures what is displayed in
aview, i.e., she configures the descriptive statistics overview.

In addition to the Moving Average trace, we show traces
for other common statistics, as shown in the Trace View Fig-
ure 2 (top-right, trace-view). The statistics are computed as
the brush moves and new points are added to the trace on
each position change. This can result in overplotting if un-
constrained brushes are used. Additionally the user can con-
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Figure 2: Top-Left: An animation brush moves automatically from the start to the end point. Top-Right: The user can stop or
pause the animation and select any point on the path and the descriptive statistics overview moves and shows updated values.
The relative difference plot shows the difference between the actual (brown) and the reference (black) center point and spread.
Bottom-Left: The mean value for brushed data is shown in parallel coordinates, and the table below the view shows additional
statistics. Bottom-Right: The mean values are shown for each cell of the three 25% percentile grids in parallel coordinates.

figure the size for the trace buffer. Optionally, we can add
a new point to the trace only if its value is different to the
previously saved value.

Traces shown in the Trace View are computed for selected
dimension only, i.e., in a case of scatterplot either for the hor-
izontal or vertical dimension. We also provide an option to
draw the paths of the center points (we call it pathlines) in
the view (Figure 2 (top-right, main-view)). To support the
comprehension of a position change of the moving brush,
we encode the direction in the paths from center points too.
Further to support perception and cognition, we overlay a
cross-hair depicting the spread in the linked scatterplot. De-
pending on the user preferences, the pathline is extended as
the animation evolves, or the complete path is shown and the
cross-hair moves along the path.

In Figure 2 (top-right, main-view) the blue squares indi-
cate the mean center point and the brown squares indicate the
midrange point. The cross-hair shows the one standard devi-
ation spread in both directions from the mean center point. In
this way, the user sees all points in the focus, but we help her
in perceiving the data characteristics. This is exactly what
we try to extract from the data when observing the trends.

In order to quantify changes of center points and spreads
with respect to a moving brush, we depict them numerically

as well. We display the values for the current brush in a table.
As the brush moves, the descriptive statistics overview and
the table with the numerical values update accordingly. This
is done also for all selected axes in the parallel coordinates,
as shown in Figure 2 (bottom).

The psychologist Barbara Tversky [TMBO02] found from
reviewing nearly 100 studies of animation and visualization,
that rich static diagrams are outperforming animations. Fol-
lowing this we provide the possibility to analyze the path-
lines showing them in the linked view as a static overlay.
The user can analyze statistics computed at different path-
line positions by simply clicking on a center point, either in
a pathline shown in a scatterplot or in a Trace View.

As the pathline of the mean point in Figure 2 (top-right,
main-view) shows, the center points change significantly be-
tween the frames in the linked view. Such a change causes
sudden jumps in the linked view, and distracts the user. This
distraction exacerbates the mental image creation. In com-
bination with the animated brush we propose to animate the
crosshair transition in the linked view in order to prevent a
distraction of the user. The cross-hair stays at a brush po-
sition for some predefined time “hold-time” (few seconds),
then it smoothly travels to a new position within some pre-
defined time (usually shorter then the “hold-time”). Visual-
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ization of the transition does not only help in eliminating
distraction, it also actively amplifies cognition of the trend
evolution. However a case study is necessary to quantify the
exact impact.

We extended the idea to support the mental image creation
further, focusing on the change of the center and the spread.
We design the relative difference plot in order to support the
comprehension of data changes in a linked view. We need
a reference for the relative difference plot. As we have an
animation brush that moves linearly in the brush space, we
establish a reference brush path as a linear path between the
first and the last brush in the linked space. We interpolate
center positions and horizontal and vertical spread values.
These values represent the reference. Now, for each brush
we compute the linked data center point and spread values
and depict them relative to the reference values. The brown
path is created by connecting the center points of each frame
of the animation, just as shown in Figure 2 (top-right, main-
view). The path in black is the reference path. The rela-
tive difference plot gives clear information about how av-
erage temperature and average precipitation are related non-
linearly to the analyzed country region.

4. Demonstration

The newly proposed techniques are evaluated in the context
of a vehicle simulation model which is representing a four
wheel drive (4WD) power transmission vehicle. The model
respresents the engine, a manual gear box, the central dif-
ferential, the front and rear shafts, the front and rear differ-
ential, and the axles. The transmission shafts are modelled
as elastic components with different stiffness and damping
parameters for each shaft. The stiffness and damping of the
main shafts are varied through a wider range. Additionally,
the central differential split ratio, representing the distribu-
tion of torque between the front and the rear axle, is var-
ied from O (rear wheel drive RWD) through 0.5 (4WD) to 1
(front wheel drive FWD). The simulation is done for a full
load acceleration test, where the maximum acceleration per-
formance is checked. Under such conditions, power trans-
mission elements are maximally stressed. Due to the elas-
ticity of the power transmission elements, oscillations in the
power transmission can occur. If they are large and at a low
frequency, discomfort is caused. The target of the analysis is
to check how performance and comfort parameters are sen-
sitive to the stiffness and damping values of the main shafts
in the modelled vehicle for various torque split regimes. The
variability of stiffness and damping is influenced in a narrow
range by imperfections in manufacturing, assembly and ma-
terial. The differences in oscillations cause comfort effects
(increased amplitude and frequency in vehicle acceleration),
as well as performance issues marked in fuel consumption
and acceleration. A data ensemble is computed, varying dif-
ferential split ratio in the range O to 1, as well as damping and
stiffness of front and rear shafts (in the range =30% of the
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nominal value). 2000 calculations are performed with five
input variables varied with a Sobol sequence. In each case,
we study fuel consumption, the maximum torque reached for
specific gears, vehicle longitudinal acceleration, and maxi-
mum torques on front and rear shafts.

First we check how stiffness and damping influences the
consumption and longitudinal acceleration (one of the com-
fort measures). The test has been split into two parts. First,
a stiffness check has been done by changing the front-shaft
stiffness. The results showed that there is no significant in-
fluence on longitudinal acceleration and fuel consumption.
Mean values did not change much. By changing the stiffness
of the rear shaft, it is found that a lower stiffness reduces lon-
gitudinal acceleration (more comfort). In both cases, spread
in consumption is large for varying stiffness. So the con-
sumption could be sensitive to variations in stiffness due to
the manufacturing process, but only within a narrow range
of less than 0.1% of the absolute value. The percentile grid
proved very useful to accurately move the brush across the
input data space. At each step the brush accommodates 10%
of the observed data points for the stiffness of the rear shaft
as shown in Figure 3 (A-brushed view), as this is the ex-
pected maximum variation due to errors in manufacturing
and material. The calculated performance parameters are in-
vestigated concerning mean value and distribution. The tar-
get is to a find a brush view position with the smallest distri-
bution range. This brush position specifies a nominal damp-
ing and stiffness that will in case of a manufacturing/material
error cause the smallest effect on performance/comfort. The
goal looks like precisely defined, and we could calculate re-
sults automatically, but actually it is not that simple to au-
tomate this before establishing the analysis steps. IVA sup-
ported with the new extensions for linking and brushing is a
great help in finding and defining the relevant analysis steps,
as one of the domain experts stated. We do this by moving
the brush across the entire rear-shaft stiffness-range in ten
steps (with the snap-to-grid option enabled), and reading the
spread value from the statistics table. In this way it was easy
to move the brush forth and back, knowing that at each po-
sition change, the brush will select the next 10% of the data.
We also used the “select and highlight” option in the brush
trace, after the trace was created. This was done to easily
select the point of interest, for example, the point with the
lowest value for cumulated consumption, see Figure 3 (A—
brush trace in the linked view). The relevant components are
cross-referenced, including the brush and the brushed points
in the brushed view, which is updated according to the se-
lected position in the trace. The cross-hair was useful as a
qualitative indicator for spread change but we need a quan-
titative value to confirm the visual insight, especially if the
cross-hair changes its size only slightly.

Next, we check the dependency of the maximal torques
in different gears for various stiffness parameters. We use a
10 x 10 percentile grid which provides a visual assistance for
brushing the lowest and highest 10% of stiffnesses values for
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Figure 4: A screenshot from an analysis of the main shafts, torques and stiffness parameters.

the front and rear shaft. At these positions respectively we set
the start and the end frame for the animation. We use eight
inter-frames, as this constrains the brush to move uniformly
across the data space. In this case we prefer to use anima-
tion instead of moving the brush with the mouse. Albeit the
snap-to-grid option works great, moving the brush always di-
agonally while concentrating on several linked views is time
consuming. While the animation is played in the brushed
view, the linked scatterplots show changes for the first three
gears. Due to space constraints we show only two linked
views (Figure 4). Contrary to our expectation, the maximal
values of torque rise with higher stiffness only for the first
gear. The distribution of results shows that for example max-
imum torque of the Z"dgear can fluctuate significantly with
changes in stiffness. However we see from the absolute nu-
merical values that the fluctuation is in a range of less than
one percent. This makes the selected stiffness range “robust”
concerning on manufacturing imperfections.

In the next example, we use the Mahalanobis brush. We
move the brush along the two visibly separated paths (Fig-
ure 3 (B)), which are parallel to each other and include al-
ways 10% of all data items in the brush. Such an exploration
would be very complicated to do using conventional brush-

ing only. In our case it was a success right in the first attempt.
Figure 3 (B) shows the results. It is very interesting to see, as
shown in Figure 3 (B-linked view for the brush 1), how the
linked parameter space splits. This happens once we return
towards the lower values for both the torque front and torque
rear drive-shaft parameters. But, this happens only for the
upper path in (Figure 3 (B)), the one with constantly slightly
higher front drive shaft values.

The last check is performed for maximum torques in dif-
ferent gears, for different driving regimes: FWD, RWD or
4WD. Parallel coordinates are used to show six data dimen-
sions at once, and a statistics for the center points are en-
abled in the view (Figure 3 C). The first axis shows dif-
ferential split ratio, and gears are mapped to the successive
axes. We use the 10% percentile brush for selecting the dif-
ferential split ratio at three different positions. The analysis
shows that the maximum torques in gear two and four have
relatively higher mean values than the torques in the other
gears for three transmission cases. This is a hard to find de-
sign phenomenon which is determined by coupling an en-
gine with its power characteristics and used gearbox.

Constraint brushing is an invaluable feature in a team-
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work, if team members work on same types of datasets and
need to (re)build an analysis step by step. As with this fea-
ture brushing becomes accurately defined, it is easy to step
back in the analysis and try a different path, preserving all
what has been done up to that point. Constraint brushing
makes analysis steps recordable and easy to communicate.
Our linking&brushing extensions proved to be useful for
data analysis in the presented case. Linking quantitative and
statistical parameters extended the boundaries of what can
be recognized from raw data. One request that followed from
this case study is to depict also the *Spread’ as a graph, next
to Mean, Median, Midrange, in the statistical overview.

5. Discussion

In this paper we propose the use of constrained brushing, as
an addition to the traditional (unconstrained) brushing, sup-
porting the reproducibility of the analysis results. Specifi-
cally, our aim was to simplify the way how the user can re-
peatedly select the same data subset of interest, without the
need to record an entire workflow. We show how to con-
trol the brushing interaction by introducing the concept of
a structured brushing space, based on anchoring the brush,
the extent of the brush, and the movement of the brush. The
user can decide how to combine these constraints, for exam-
ple, she can snap to a conventional grid for moving the brush
and use a percentile brush for the brush extent. Although we
exemplify the newly proposed techniques for scatterplot and
parallel coordinates only, it is straightforward to extend them
also to other views with quantitative axes.

Constrained brush movements provide benefits when do-
ing a rank-based analysis, since at each step we can better
control and interpret the brush. Extensions like the percentile
grid and percentile brushes are powerful options for doing
rank-based analysis. The results can be reproduced later very
easily, for example, based on a textual description of the
brushed data. The analyst can benefit from the structured vi-
sualization space even if constrained brushing is not enabled.
An example is to depict the grid which assists to navigate
the brush over the presented data. The constrained brushing
can help the user to stay in the ’flow of analysis’, while also
providing quantitative precision. The user can quantitatively
interpret the brush while moving it along the constrained di-
rection. Indirect manipulation, e.g., through off-screen wid-
gets, such as sliders, can compromise the user’s focus on
direct interaction to a certain degree. An example of indirect
manipulation would be the Mahalanobis brush. The user sets
with a slider the percentage of the points that should be se-
lected by the brush. The brush adapts its size and shape auto-
matically depending on the underlying data distribution. An
alternative option could be to use a clustering algorithm to
automatically calculate a meaningful percentage for the size
of the Mahalanobis brush.

Grids proved to be very useful for structuring the brushing
space. We provide some meaningful default values for the
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grid size, e.g., we divide the data space into four quartiles,
but we also allow the user to specify non—uniform grids. We
also consider possibilities to use automatic methods for ex-
ploring the data space and divide the grid according to the
data distribution. For now the user can manually set the grid,
e.g., task driven, either rank-based or value-based.

Summarized statistics shown in linked views, in a table,
or as an overview, present a natural way for adding quan-
titative information about the brushed data to other dimen-
sions. Those can be added also for views which do not have
quantitative axes. However quantitative extensions to show
descriptive statistics for categorical data are not covered in
our current work.

Traces from brushing can be used for analyzing data at
different pathline positions. To follow the principles of IVA
this should be interactive and cross-linked with other views.
If a point on the trace is selected, the brush in the brushed
view should also be updated. This way the user can go
back to some point of the analysis and maybe explore it to-
wards some other direction. Obviously, the extensions that
we present in this paper are only a first step and we expect
substantial future research towards quantitative and repro-
ducible visual analytics.

6. Conclusions and Future Work

In this paper, we address two important limitations in cur-
rent visual analytics, namely the lack of reproducibility
and quantitative results. We present extensions to the well-
established concept of linking&brushing including con-
strained brushing, animated brushing and percentile brush-
ing. They can improve the reproducibility of visual analytics
and provide the user with quantitative results. We discuss a
possible structuring of the brushing space that is oriented
towards an improved reproducibility of interactive brush-
ing. The Mahalanobis brush takes the local data distribution
into account and selects a predefined number of points. This
brush is especially useful in areas with an elongated data dis-
tribution. Compared to the circular percentile brush and the
standard rectangular brush it does not select outliers from
the underlying data distribution. An advantage of integrat-
ing descriptive statistics is that it helps in creating a better
mental image of changes in the linked views while the brush
is moving. Animation is an example of how to structure the
brushing space, such that in the brush view the selections re-
main simple and easy, while the user is free to concentrate
on the interpretation of the linked view(s). As an addition to
the animation, the relative difference plot adds to the com-
prehension of data changes in the linked view(s). In general,
and in order to conquer important new application fields, we
conclude that there is a need for visual analytics to (also)
provide reproducible and quantitative results.
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