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Figure 1: A simplified example of a data model from multi-run simulations in combustion-engine design. Dimensions are structured hierarchically
and dimension sets serve as a mechanism to define groups of semantically related subsets.

ABSTRACT

The high dimensionality of a dataset can be a result of the chosen
data model. In such cases, the challenge of an analysis is to consider
the structure and the semantics of the dimensions. This poster pro-
poses the concept of dimension sets, which are user-defined sets of
related dimensions for parameterizing views and interactive selec-
tions. We describe options for visual layouts and implications when
relating multiple dimension sets, and we outline extensions to inter-
active queries. Examples from the analysis of multi-run simulations
in combustion-engine design illustrate the work. This domain also
provides an application area where first evidence for the usefulness
has been collected.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction Styles

1 INTRODUCTION

Datasets with hundreds of attributes are becoming increasingly
common. When analyzing such high-dimensional data, it is im-
portant to consider the source of the high dimensionality. In many
cases, all dimensions are considered unrelated a priori and it is a
goal of the analysis to reduce the dimensionality by determining re-
lations. Two fundamental strategies for dimension-reduction are to
project data to low-dimensional space and to structure the dimen-
sionality for selecting a subset thereof. Examples of projections
include linear methods like Principle Component Analysis [3] and
non-linear methods like Multi-Dimensional Scaling [5]. Examples
of dimension-based structuring include semi-automatic approaches
for grouping similar dimensions [7] or ranking dimensions with re-
spect to different notions of relevance [6]. Recently, interactive
workflows have been proposed [2, 1] where more comprehensive
overviews of related work can be found.

In some cases, however, the high dimensionality is a result of
the data model and the structure of the dimensions is known in ad-
vance. Our application background, for example, is the analysis
of multi-run simulations in combustion-engine design [4]. Such
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data involves different simulation results (e.g., temperature, pres-
sure, etc.) at a — typically small — number of measuring points
within a conceptualized block model of an engine. As illustrated in
Fig. 1, the high dimensionality results from discriminating different
simulation results per measuring point as distinct dimensions. All
dimensions are structured hierarchically to reflect different levels of
the block model (e.g., measuring points, cylinders, etc.). While the
data could in principle be laid out differently, the domain experts
decided for this data model for two reasons: First, each row rep-
resents an entire simulation run. This matches their mental model
when analyzing the data. Second, the number and the type of sim-
ulation results varies across different measuring points (see Fig. 1).
Alternative data models (e.g., encoding the measuring point as cat-
egorical dimension) would thus be inefficient due to many missing
values, or make queries complex due to splitting the data across
multiple relational tables.

The key challenge is to enable an analysis of different levels
of the dimension hierarchy without reflecting the potentially large
number of involved dimensions by the complexity of visualization
or interaction methods. For example, a scatterplot may visualize
“temperature versus velocity” for a single measuring point or for
multiple measuring points.

2 VISUAL ANALYSIS USING DIMENSION SETS

The basis of the proposed approach is the concept of dimension
sets. A dimension set is a group of semantically related dimen-
sions with a comparable scaling, identical units, and a certain struc-
tural position within a given dimension hierarchy. For example, the
dimensions representing “temperature” at all measuring points of
cylinder 1 could be a meaningful dimension set in our application
scenario. Conceptually, the structural position can be described as
a path within the dimension hierarchy that may contain wildcards,
e.g., “engine.cylinderl.measuringpoint*.temperature”.

The key idea with respect to the visual analysis is to support a
parameterization of views and interaction techniques like brushes
in terms of dimension sets. For visualizations, the requirement of
having a comparable scaling ensures that all dimensions of one set
can reasonable be mapped to the same visual reference. Basic op-
tions for visual layouts include overlay and spatial separation.

Overlay draws the visual representation for all dimensions within
the same visual space. As a consequence, a single data record typ-
ically has multiple visual representations - one for each dimension.
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Figure 2: Visualization examples of dimension sets. (a) A histogram
aggregating ten data dimensions; (b) a heatmap showing the same
ten dimensions as adjacent rows; (c) a scatterplot relating two di-
mension sets when highlighting the visual items of one data record.

Fig. 2a shows a histogram that accumulates the frequencies for all
dimensions of one set as an example of a frequency-based visualiza-
tion technique. Item-based visualization techniques draw the visual
elements for all dimensions (see Fig. 2c). Overlay is most useful to
convey an overview of dimension sets in their entirety. For exam-
ple, it indicates whether the values of any dimension have certain
characteristics (e.g., exceed a certain threshold) without consum-
ing much space. Sometimes, a distinction between individual di-
mensions is not even necessary for this task. Otherwise, color may
indicate the contribution of each dimension for a small number of
dimensions per set.

Spatial separation layouts multiple visualizations of the dimen-
sions of one set, while a common scaling ensures the comparability
within one visual context. Fig. 2b shows an example where the
distribution of each dimension is shown as rows of a heatmap.

For visualization techniques that relate multiple variables (e.g.,
scatterplots or parallel coordinates), an important aspect is to com-
bine dimensions from multiple sets. Meaningful combinations may
be l:norn:n. 1:nrefers to the combination of a set of n dimen-
sions with the values of a single dimension. In this case, the single
dimension is visually related to each dimension of the set. In our
application, for example, the single dimension could be a parameter
of the simulation. A respective scatterplot shows the distribution of
a dimension set for all values of the parameter. In case of n:n com-
binations, the involved dimension sets are not only required to have
an equal cardinality, but must also refer to common parents within
the dimension hierarchy. For example, plotting temperature against

pressure is typically only reasonable if pairs of dimensions refer to
the same measuring point (as in Fig. 2¢). The extension of this con-
cept to combinations of more than two sets is straightforward, e.g.,
for 3D scatterplots.

Interactive selections also need to consider the concept of dimen-
sion sets. Representing single data records by multiple visual items
introduces ambiguities that can be resolved in different ways. Typi-
cally, selections operate on entire data records, i.e., simulation runs
in our application. In this case, two possible strategies may be A/l
or Any, referring to logical AND or OR combinations, respectively,
when applying a certain selection criterion to all dimensions of one
or more sets. In our experience, a particularly useful application of
the strategy Any is to highlight all visual representations that refer
to a certain data record (see Fig. 2¢). In combination with appro-
priate focus+context techniques, such a selection helps to identify
structures across multiple dimensions for single data records.

Alternatively, selections may also operate on parts of data
records, taking the structure of the dimension hierarchy into ac-
count. For example, selecting an item in a scatterplot could affect
only those dimensions of the respective measuring point. While
this approach is suitable to display details for specific visual rep-
resentations, it is usually less suitable for linking visualizations of
different parts of the dimension hierarchy.

3 FEEDBACK AND LIMITATIONS

First feedback from domain experts in combustion engine design
confirmed several advantages of dimension sets. According to
them, the most important advantage of dimension sets is to en-
able an analysis in terms of semantically meaningful and coher-
ent groups despite potentially thousands of different simulation re-
sults. To them, the visualization of dimension sets provides useful
overviews and enhances the comparability of multiple dimensions.

In some sense, dimension sets are an approach to transform a
high-dimensional analysis problem into a visualization problem of
many data items. However, as a key limitation, dimension sets are
only applicable to certain types of high-dimensional data, i.e., data
consisting of dimensions with corresponding semantics and a com-
parable scaling. Especially item-based visualizations may suffer
from cluttering if the product of the number of dimensions times
the number of records is large. Moreover, dimension sets arouse
new challenging issues themselves, e.g., to automatically identify a
concise name.

REFERENCES

[1] S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. Moller.
DimStiller: Workflows for Dimensional Analysis and Reduction. In
Proc. of the IEEE Conference on Visual Analytics Science and Technol-
ogy (VAST 2010), pages 3—10. IEEE Computer Society, 2010.

[2] S. Johansson and J. Johansson. Interactive Dimensionality Reduction
Through User-defined Combinations of Quality Metrics. IEEE Trans.
on Visualization and Computer Graphics, 15(6):993-1000, 2009.

[3] I Jolliffe. Principle Component Analysis. Springer-Verlag, New York,
1986.

[4] K. Matkovic, M. Jelovic, J. Juric, and Z. Konyha. Interactive Visual
Analysis and Exploration of Injection Systems Simulations. In Proc. of
the IEEE Conf. on Visualization 2005, pages 391-398. IEEE Computer
Society, 2005.

[5] A. Mead. Review of the Development of Multidimensional Scaling
Methods. The Statistician, 33:27-35, 1992.

[6] J. Seo and B. Shneiderman. A Rank-by-Feature Framework for Unsu-
pervised Multidimensional Data Exploration Using Low Dimensional
Projections. In Proc. IEEE Symposium on Information Visualization
2004 (InfoVis 2004), pages 65-72, 2004.

[7] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive Hi-
erarchical Dimension Ordering, Spacing and Filtering for Exploration
of High Dimensional Datasets. In Proc. IEEE Symposium on Informa-
tion Visualization 2003 (InfoVis 2003), pages 105-112, 2003.



