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Abstract

Linking+Brushing is a proven concept to reveal rela-
tionships across multiple views. Defining complex selec-
tions, however, may involve a significant interaction over-
head. This paper proposes Peek Brush, a point-brush that
is designed to temporarily select and highlight items hov-
ered by the user’s mouse cursor. Thisenables quickly skim-
ming through the data to identify relationshi ps between dif-
ferent data projections within seconds. The Peek Brush
serves the purpose of defining a starting point to a more fo-
cused inspection using brushes with higher complexity. In
order to achieve rapid visual updates, we discuss acceler-
ation techniques like preprocessing, threading, and layer-
ing. As aresult, the Peek Brush is able to scale to datasets
with millions of entries. A case study demonstrates how the
Peek Brush minimizes the interaction effort required from
the user. It delivers a quick overview and reduces the time
needed for the initial visual analysis step from minutes to
seconds.

Keywords—L inking+Brushing, Detail-On-Demand

1 Introduction

Linking+Brushing has become a common interaction
and visualization technique in the field of Information Vi-
sualization (InfoVis) [6]. Providing means to define a se-
lection directly in a visuaization and to highlight the af -
fected items in al views helps the user to form a mental
representation of the analyzed abstract dataset [7].

Brushes are visual metaphors for dynamic queries and
are designed to make the definition of such queries more
intuitive for the user. Depending on their shape, size, and
additional parameterizations like thresholds they can per-
form complex selections. Combining multiple brushes us-
ing methods like boolean or fuzzy operations [5, 15] fur-
ther increases the query complexity. While such queries
may require a considerable amount of user interaction for
proper configuration, they are ableto defineinteresting fea-
tures in an interchangeable way. Composite brushes may
thus represent an important result of an analysis.

In contrast to such complex queries with persistent

semantics, deciding on the next investigation steps dur-
ing an analysis requires quick and temporary information
about certain visualized items. This may, for example, in-
clude skimming through different points of a scatterplot
or through all categories of a bar chart. Such requests
are of interest for seconds only, much in contrast to the
brushing interaction described in the previous paragraph.
While many systems support such quick requests, the of-
fered information is mostly local and provided via mecha-
nisms like tooltips. Relationships which only become vis-
ible through linking, however, cannot be reveal ed.

This paper introduces Peek Brush, a concept to extend
the information offered for temporary requests to multi-
ple different views. Triggered by simply pointing at items
of interest, the Peek Brush highlights corresponding visual
representations in al linked views. The goal isto provide
rich information in various visualizations while minimiz-
ing the amount of required interaction effort by the user
(e.g., no mouse clicks). The Peek Brush may co-exist with
persistent brushes, but defines a separately handled query
based on the currently displayed dataitems. The selection
aswell asthe visual updates of al linked views have to be
designed to happen within 100 ms or less after mouse cur-
sor position changes in order to meet the requirement for
immediate feedback defined by Shneiderman [12]. Thus it
is necessary to consider view dependent optimization tech-
niques and trade-offs which help to ensure that this high-
frequency brushing technique scales to datasets with mil-
lions of entries and up to a hundred dimensions.

2 Redated Work

Dix and Ellis[3] identified interaction as one of the key
concepts in visualization and proposed using techniques
like highlighting, drill-down or overview and context along
with direct manipulation to overcome trade-offsand limita-
tionsintroduced by static visualizations. The Task By Data
Type Taxonomy [13] groups datainteraction and visualiza-
tion techniques in terms of seven general tasks and distin-
guishes them based on the type of data they are intended
for. Yi et a. [16] suggest a different taxonomy which fo-
cuses exclusively on interaction techniques for which they
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Figure 1: Hovering the outlier of “Energy-Balance” in the Parallel Coordinates with the mouse cursor temporarily selects
the entry and immediately highlights the corresponding representation in the linked 2D scatterplot.

define seven high-level categories based on user intents.
Both taxonomies consider selection of entries, relationship
between items, and detail on demand as important aspects
of interaction.

Brushing is a technique that has been proposed by
Becker and Cleveland [2] and |ets the user define and mod-
ify such dynamic queries directly in avisualization. While
being intuitive in terms of application and expected behav-
ior, it becomes most useful if used in combination with
linking [7]. Thelatter describes amechanism that connects
multiple views on the same data and highlights brushed
items in al visualizations. Shneiderman introduced dy-
namic queriesasaway to incrementally move from arough
overview to a filtered data representation [12]. In con-
trast to direct interaction within visualizations, this early
approach relies on separate query widgets.

Coordinated Multiple Views have been proposed as
a term that generaizes Linking+Brushing to any action
within aview that is propagated to the whole system (e.g.
rotation, zoom). The goal is to aid the user in correctly
interpreting the displayed data [11]. Visualizing the same
dataset in multiple ways and forwarding interactions per-
formed in oneview to all other linked views contributeto a
better understanding of relations and dependencies. Wang
Baldonado et a. define additional guidelines for the use
of multiple coordinated views which point out advantages
and trade-offs for aspects like view consistency, comple-
mentarity and application of perceptua clues[14].

Munzner et al. [9] apply linked mouse-over highlight-
ing to two tree visualizations in the TreeJuxtaposer tool in
order to quickly expose similar tree nodes. Our proposal
generalizes this approach to be applicable for many differ-
ent types of linked views.

3 ThePeek Brush
The Peek Brush as depicted in Figure 1 isalight-weight
brush that is characterized by the following properties:

e It requires minimal interaction effort, i.e. no mouse
clicks.

e The selection is based only on the mouse cursor po-
sition in context of the underlying visualization.

o |t immediately highlights the selected subset in al
views.

The Peek Brush is thus a tool to get quick information
about properties and relationships for individual primitives
in avisualization. Examples for such visualization primi-
tivesare barsin ahistogram, pointsin ascatterplot, or lines
in a parale coordinate representation. Each of them rep-
resents one or more entries of the underlying dataset. The
Peek Brush allows to successively investigate many prim-
itives within a very short time. Simply moving the mouse
generates an animation-like data walkthrough that charac-
terizes entries consecutively and may help to visually iden-
tify differences between them.

It is vita that the system response time keeps up with
the typicaly high-frequent query changes while the user
is moving the mouse. Continuous visua updates within
100 ms are defined as important for data exploration [12].
Within the available response time, the affected visualiza-
tion primitives have to be determined (also known as pick-
ing) and a back-projection to the associated data entries has
to be performed. All linked views have to update them-
selves in order to visualy represent the selection by the
Peek Brush. Depending on the type of view, certain con-
siderations and trade-offs have to be made, which are now
discussed.

3.1 View Dependent Design Considerations
When designing aview, it isimportant to distinguish be-
tween active and passive support for the Peek Brush. Pas-
sive support refers to visualizing the data subset that has
been selected by the Peek Brush. This entails the trans-
lation into the visual metaphor used by the respective vi-



sualization and the actual rendering within the available
time frame. Active support means picking the visualization
primitives at the mouse cursor position along with deter-
mining and selecting the associated data items. Strategies
for active or passive support depend on the type of visual-
ization.

3.1.1 Entry-Based Visualizations

In entry-based visualizations, every entry of the dataset has
its own visual representation. Examples are scatterplots or
parallel coordinates. Passive support of the Peek Brush in-
volves varying visual attributes for the selected data items,
e.g., drawing them using a different color, size, or shape.
Active support refers to selecting data entries of which the
visual representation is below or close to the mouse cursor.

Figure 2: A background layer caches the parts of the visu-
alization which are not affected by the passive Peek Brush
representation on top of them. This layer can be reused
whenever the view is updated due to Peek Brush changes.

Dueto the requirement of immediate response, support-
ing the Peek Brush in item-based visualizations becomes
increasingly challenging for truly large data sets. Naive
approaches do not scale for data sets beyond a few hun-
dred entries. Such approaches involve processing the vi-
sualization pipeline for all data entries at every update or
performing a hit-test against every item at every mouse
move. Asasolution, discriminating visua layersinimage
space as shown in Figure 2 and using multi-threaded ren-
dering make passive support of the Peek Brush scalable up
to millions of entries. Previous work describes these tech-
niques in detail [10]. Concerning active support, prepro-
cessing helps to significantly reduce the effort of picking
data items at the cost of increased memory consumption.
Such a preprocessing typically creates a data structure that
enables a direct look-up of entries for a given position in
image space. In order to trade off precision against mem-
ory consumption, these data structurestypically bintheim-
age space asillustrated in Figure 3.

3.1.2 Frequency-Based Visualizations

Frequency-based visualizations typically draw less primi-
tives as they group data entries according to a certain cri-
terion like “value” or “category”. A visua representation

for each of these groups reflects the respective properties.
For example, abar in ahistogram is defined by the covered
value range and the number of entries within this range.
Entries, as selected by the Peek Brush are subsets of the
groups. As such, each subset has to be visually related to
the whole group (e.g. by visualizing the relative size, see
Figure 2). However, the involved calculations may take
some time for large subsets. In this case, multi-threading
and Early Thread Termination as described in [10] can be
used to prevent blocking the whole application.

On the other hand the comparably low number of vi-
sua itemsin afrequency-based visualization alleviates fast
picking. It is even possible to pick in constant time for
visualization techniques where no overlay between items
may occur (e.g. histograms, bar charts).

3.2 Implementation Examples

This section describes concrete implementation exam-
plesfor views that support the active Peek Brush by means
of a 2D scatterplot, parallel coordinates, and a histogram.

All views are part of VISPLORE, a system for visua
exploration. In order to ensure immediate response while
scaling up to millions of data entries, the views implement
the architecture as described in previous work [10]. How-
ever, in order to meet the demanding requirements con-
cerning performance of the Peek Brush, further optimiza-
tion concepts have been integrated, as discussed below.

3.21 2D Scatterplot

Concerning passive support of the Peek Brush, the 2D scat-
terplot separates the visualization of the items as selected
by the Peek Brush from the remaining visualization. The
reason is that the contents of the Peek Brush are changing
rapidly when the user is moving the mouse, while other
parts of the visualization are not affected and can thus be
regarded a kind of background. Technically, this back-
ground is cached in image space as atexture that is reused
whenever a redraw of the Peek Brush is necessary. The
items of the Peek Brush itself are drawn on top of this
texture. While this involves processing the entire visual-
ization pipeline for the selected data entries, it is till fast
when the subset of items of the Peek Brush is small which
istypicaly the case.

Active support of the Peek Brush utilizes an accelera
tion technique as motivated in Section 3.1.1. The basic
approach is to keep an index list for each pixel of the 2D
scatterplot which stores the respective associated data en-
tries. Whenever the active Peek Brush needs to be updated
due to a position change of the mouse cursor within the
view, the affected bin can be determined from the x- and y-
coordinates with constant effort. Depending on the size of
the scatterplot points, however, one point may cover more
pixels which causes an individual entry being indexed in



many different bins. This leads to a memory consumption
that is a multiple of the represented data points. We there-
fore consider only the center of each point, so that each en-
try is indexed once. Consequently, the memory consump-
tion stays reasonably low also for large data.

Figure 3: Each block in the image space of the 2D scatter-

plot maintains the indices of points that have their center
located in it.

On the other hand, since the indexing is performed in
image space, the amount of used memory is aso depen-
dent on the screen size of the scatterplot. In order to reduce
this amount for high resolutions, we perform subsampling
by using aregular grid as illustrated in Figure 3. Our im-
plementation subdivides the image space into 4 x 4 pixel
sized blocks. Our experience shows that the loss of ac-
curacy caused by these blocks is negligible in practice for
point sizes larger than two pixels.

3.2.2 Parallel Coordinates

For active support of the Peek Brush, Parallel Coordinates
employ asimilar acceleration structure like the 2D scatter-
plot. In contrast to the 2D scatterplot, however, the pixels
covered by a single data entry are not close together, but
spread across the whole width of the view. It is therefore
inevitable to refer to the same data entry in multiple loca-
tions. In order to overcome this possibly excessive mem-
ory consumption, we limit the number of entries per loca-
tion to afixed value. If thislimit is reached, the index list
is disposed and the corresponding location is treated as if
it was empty for the Peek Brush since it covers too many
overlapping items. This thresholding could be seen as a
major trade-off, but it ensures that the active Peek Brushin
the parallel coordinates scales to millions of entries while
having no accuracy impact on representations of smaller
datasets.

Our implementation subsamples the image space by
blocks of 4 x 4 pixels as described for the 2D scatterplot.
Rasterizing the polyline of each entry into these blocks,
however, makes the necessary preprocessing more expen-
sive than for the 2D scatterplot.

The passive support of the Peek Brush subdivides the
visualization into layers and renders them using textures as
described in Section 3.2.1.

3.23 Histogram

The histogram serves as an example for the implemen-
tation of the Peek Brush in a frequency-based visualiza-
tion. Theregular positioning of the visualization primitives
without overlap allows for picking a histogram bar within
constant processing time. As for the 2D scatterplot and
the Parallel Coordinates, quick back-projection of the se-
lection requires storing the entry indices per bar during the
binning process. The additional memory that is required
for keeping these indices scales linearly with the number
of data items and is therefore (as in the case with the 2D
scatterplot) an acceptabl e trade-off.

Regarding passive support of the Peek Brush, the neces-
sary binning of the selected items might become the bottle-
neck during an update. Since the contents of a Peek Brush
selection can be regarded as volatile, accelerating the bin-
ning through the use of precomputations is not possible.
However, we observed that in most cases the number of
entries selected by a Peek Brush is small enough to alow
for binning and drawing within the available time. Other-
wise support for the Early Thread Termination pattern [10]
ensures responsiveness of the view.

4 Results

We now demonstrate how the Peek Brush accelerates
avisual exploration by means of an application scenario.
The analyzed dataset contains the results of 4160 simula-
tion runs, which have been performed during the design
stage of afour cylinder turbodiesel car engine by AVL [1],
a company in the field of powertrain simulation, mea
surement and design. The outcome of a single run pre-
dicts properties like torque and fuel consumption at de-
fined measuring points. In order to evaluate several de-
sign options with different engine states (e.g. engine load
and speed), this high number of different runsis necessary.
Matkovi€ et al. [8] describe an extensive analysis of such
data.

The goal of the presented example isto analyze the be-
havior of the engine sturbo charger at the simulated engine
speeds. Moreover the associated general temperature and
massflow characteristics at the first measuring point of the
exhaust pipe are investigated, as they impact the efficiency
of the turbo charger.

As afirst step, al values for engine speed (measured in
rotationg/minute) that occur in the dataset are assigned to
a categorical visualization as distinct classes. Each classis
represented as a box as seen in the leftmost images of Fig-
ure 4. The width of such abox is scaled depending on the
relative frequency of the respective category. Furthermore
massflow (kg/cycle) and temperature (K) are assigned to
the axes of a scatterplot. As the third visualization, Par-
allel Coordinates contain axes for four different operating
characteristics of the turbo charger.
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Figure 4: Hovering across the four simulated engine speeds in the categorical visualization (left) immediately highlights the
associated entries in all other views. (@) shows the Peek Brush for speeds of 1500 rpm, where “Energy-Balance” contains
an outlier as seen in the Parallel Coordinates (right). (b) highlights simulations for 2000 rpm, where Parallel Coordinates
show that the turbine of the turbocharger peaks in terms of work, efficiency and pressure ratio. The exhaust temperature,
whichisvisualized in the 2D scatterplot, reaches its maximum as well.

Hovering across the four ssmulated engine speeds im-
mediately highlights the associated simulation runs within
the other two plots. Moving the mouse cursor from 1000
rpm to 1500 rpm (Figure 4 (a)) shows a genera rise of
massflow. The turbocharger starts unfolding its capacity,
as the turbine work increases significantly along with the
efficiency and pressure ratio. When hovering to 2000 rpm
(Figure 4 (b)), it isinstantly visible, that the turbocharger
reaches its maximum in terms of work, pressure ratio and
efficiency, which has a value of 65 %. The relation to the
exhaust characteristicsisreflected in the linked 2D scatter-
plot which highlights points of high temperature and mass-
flow. At 2500 rpm the performance ratings decline along
with exhaust temperature. Massflow reaches its maximum
values due to the high engine speed.

The Parallel Coordinates show an interesting outlier for
the attribute “Energy-Balance” at a speed of 1500 rpm.
In order to inspect the associated point in the 2D scatter-
plot, the respective line representation is simply hovered
as shown in Figure 1 and immediately highlighted in all
views. Aswe can see, also the temperature and massflow
valuesreflect adight deviance, since the respective pointis

located outside of the cluster that is formed by simulation
runs at the same engine speed. As aresult, this single run
could either become subject to more detailed investigation
or excluded from the following data analysis.

All insights described in this section have been gathered
within fifteen seconds of interaction (excluding setting up
the three views), which fortifies the Peek Brush’s potential
to save the user a significant amount of time by reducing
complexity and interaction effort to a minimum.

5 Discussion and Future Work

We believe that the Peek Brush functionality can be
successfully integrated in many different types of visual-
izations. Currently, our InfoVis system VISPLORE imple-
ments it for 2D scatterplots, Parallel Coordinates, time se-
ries visualizations, function graphs, histograms, and cate-
gorical representations. Previouswork [10] has shown pro-
viding immediate visual feedback is possible even for mil-
lions of entries by utilizing multi-threaded rendering, vi-
sual layering, and view specific optimizations as described
in Section 3.

The use of image space precomputationsfor accelerated
picking, however, can come at the cost of high additional



memory consumption. In Parallel Coordinates, for exam-
ple, a data entry representation covers many pixels. Thus
the necessary caches may become very large, as each entry
isindexed multiple times. Asaresult, trade-offs have to be
introduced as described in Sections 3.2.2 and 3.2.1.
Investigating the support for the Peek Brush in visual-
izations for other types of data like graphs and hierarchies
is part of future work. Furthermore, combining it with spa-
tial distortion techniques like the Fisheye View [4] may be
a promising approach to increase picking accuracy by re-
ducing potential overlaps between visualization primitives.

6 Conclusions

This paper introduced the Peek Brush as away to select
data in a visualization with minimal interaction effort and
todisplay itimmediately in al linked views. We discussed
performance considerations which have to be made when
designing aview that supports the Peek Brush. In this con-
text we discriminated between frequency- and entry-based
visualizations and i dentified different optimization require-
mentsfor supporting the active and the passive Peek Brush.
As demonstrated, this temporary ad-hoc brush allows for
quickly skimming through the data and is able to reveal
relations and properties within seconds.
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