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Abstract

In this paper we present an extended critical point concept which allows us to apply vector field topology in the
case of unsteady flow. We propose a measure for unsteadiness which describes the rate of change of the velocities in
a fluid element over time. This measure allows us to select particles for which topological properties remain intact
inside a finite spatio-temporal neighborhood. One benefit of this approach is that the classification of critical
points based on the eigenvalues of the Jacobian remains meaningful. In the steady case the proposed criterion
reduces to the classical definition of critical points. As a first step we show that finding an optimal Galilean frame
of reference can be obtained implicitly by analyzing the acceleration field. In a second step we show that this can
be extended by switching to the Lagrangian frame of reference. This way the criterion can detect critical points
moving along intricate trajectories. We analyze the behavior of the proposed criterion based on two analytical
vector fields for which a correct solution is defined by their inherent symmetries and present results for numerical
vector fields.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications; 1.6.6 [Sim-

ulation and Modeling]: Simulation Output Analysis

Keywords: Flow visualization, unsteady flow, vector field topology, Lagrangian coherent structures.

1. Introduction

Vector fields are a common data representation in scientific
computing. For example numerical solutions to differential
equations can be represented as vector fields. One important
tool to analyze the behavior of vector fields is Vector Field
Topology (VFT), since it provides a view on the geomet-
ric structure of the field. From the viewpoint of visualization
one of the most intriguing aspects of VFT is that it condenses
the flow into salient structures which can be simpler to un-
derstand than the original data.

Based on the analysis of the Jacobian it is possible to se-
lect representative streamlines (or streamsurfaces in three
dimensions) which separate regions of the vector field of
similar behavior. The set of these representative streamlines
is called the topological skeleton. It consists of degenerate
streamlines (called critical points), streamlines that converge
to saddle points (called separatrices) and closed streamlines
(called closed orbits). In the steady case critical points can
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be defined as the positions where the vector field is zero. In
the unsteady case the critical points and separatrices have no
straightforward definition anymore, since the additional pa-
rameter of time allows the critical points to move in space.
Therefore they do not necessarily separate space into differ-
ent regions of similar behavior. In Sections 3 and 4 we dis-
cuss alternative definitions of critical points in the unsteady
case.

One important field of application of topological methods
is fluid dynamics. In their seminal work Lighthill [Lig63]
and later Perry and Chong [PC87,PC94] applied topological
analysis to classify regions of turbulent flow, contributing to
a young field of research which is today known as topologi-
cal fluid dynamics.

VFT can handle both static vector fields and vector fields
that depend on a parameter. In the latter case, VFT is ap-
plied (conceptually) to the fields at fixed parameter values.
The results obtained for different parameter values can then
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be connected in several ways. One way is through bifurca-
tion theory, which VFT inherited from the underlying theory
of dynamical systems [AS92]. Bifurcations describe topo-
logical changes happening at some parameter values.

1.1. Time-dependent vector fields

The parameter of a vector field can also have the meaning
of time. The VFT-based visualization of a time-dependent
vector field is in general still valid. A restriction must be
made though if the vector field represents a velocity field.
In this case, VFT is able to show the evolution of the in-
stantaneous velocity fields, but it fails to show the dynamics
of the unsteady flow described by the time-dependent veloc-
ity field. This happens for example, when a moving critical
point leaves a region of the flow before it can influence the
surrounding region. Since in many, if not most, applications
of VFT the vector field represents velocity, this limitation of
VFT must be addressed.

While for near-steady flow, VFT can provide good enough
approximations for a qualitative visualization, this is no
more true for strongly unsteady flow where the behavior of
particles has no relation to instantaneous streamlines any-
more. The “double gyre” by Shadden et. al. [SLMOS] and
the “Petri dish” dataset by Wiebel et. al [WCW™09] showed
that VFT fails to produce meaningful results. Both examples
demonstrate that critical points, if they are moving too fast,
give unreliable information.

1.2. Changing the frame of reference

Changing the frame of reference is an obvious approach in
many cases, for example if a feature like a vortex is advected
with an underlying current [PT84] or to find a common
frame of reference to register multiple snapshots of weather
radar data [MatO1].

Perry and Tan [PT84] early pointed out the problem of
finding an adequate frame of reference to extract meaning-
ful critical points. For unsteady flows there does not have
to be a single frame of reference which allows us to extract
all important topological features. In this paper we therefore
suggest to extend this approach to find an optimal change
of the reference frame locally. One question we deal with in
this paper is how such a frame can be selected.

A criterion for the validity of VFT in a given frame was
given in 1994 by Perry and Chong [PC94], who stated:

It is only when a Galilean frame of reference can
be found which gives an almost steady velocity
field that we have a velocity pattern with some use-
ful physical meaning.

In other words a critical point is only good when the field
is more or less steady around it so that the critical point has
time to influence the flow. This criterion will be later used as
the basis of our approach.

When the motion of a critical point is known to be near
linear, changing to a Galilean frame of reference can be suf-
ficient. In this case such a change would be preferred, since
this type of change has the implicit interpretation of a mov-
ing observer. In Section 3 we discuss an approach to find an
optimal Galilean frame, locally. On the other hand, there are
patterns, e.g., jets in cross-flow [Kel91] where there is no
single Galilean frame which can be chosen to extract all the
critical points at once. The eddies are accelerating and for a
given frame of reference the eddies can be extracted as foci
but only for a short time interval. This means a linear trans-
formation is not always sufficient, as also demonstrated by
the “Petri Dish” and the “Double Gyre” example in Section
5.

1.3. Unsteady critical points should be particles

In the topological skeleton the separatrices enclose regions
of similar behavior and intersect at the saddle points. There-
fore, we can interpret saddle points as positions where
regions of similar behavior connect. Conversely, particles
which belong to adjacent regions are expected to show dis-
similar behavior otherwise the two regions should not be
separate. Therefore, we can expect a good definition of a
time-dependent topological separation to separate particles
which remain in a single region of similar behavior over
time. This requirements coincides with the property of a
material surface [Bat67] to separate the interior and exte-
rior material. Therefore, we can require the boundaries of a
time-dependent topological skeleton to be material surfaces
and the unsteady critical points to be fluid particles. Sim-
ilarly, a critical point that represents a sink (source) is ex-
pected to move like a single particle that acts as an attractor
(repeller). This realization is our motivation to switch to a
Lagrangian frame of reference to find critical points moving
on non-linear trajectories. Of course taking into account the
approximate nature of CFD data sets, we can also expect the
extracted critical points to fulfill this requirement approxi-
mately. This approach also has a disadvantage: if we locally
change to the frame of reference that has the same motion as
the particle, all particles are critical points (in its own frame
each particle has zero velocity). Therefore we need a crite-
rion to select appropriate particles in the Lagrangian frame.
In Section 4 we show how the unsteadiness criterion can find
critical points in the Lagrangian frame of reference.

The contributions of our paper are as follows:

e A criterion to locate moving critical points.

e An unsteadiness criterion that allows us to measure the
spatio-temporal rate of change of the vector field at each
position.

e An algorithm to find critical points in an optimal Galilean
frame of reference.

e Our analysis gives an alternative understanding of a pre-
vious approach by Kasten et al. [KHNHO09].
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e We present a novel synthetic field which captures the be-
havior of the “Petri dish” data set [WCW™*09].

e A natural way to classify critical points in unsteady flow,
since the analysis of the Jacobian remains meaningful.

2. Related work

Topology-based flow visualization is an active research
topic. Lighthill [Lig63] and Perry and Chong [PC87] were
among the first to apply VFT to fluid flow. Helman and
Hesselink introduced these methods to the scientific vi-
sualization community for the visualization of velocity
fields [HH89, HH91]. Globus et al. applied these tech-
niques to CFD data sets and showed their practical rele-
vance [GLLI1]. For a detailed overview we refer to Asi-
mov’s excellent tutorial [Asi93] and a recent state-of-the-art
report by Laramee et al. [LHZPO7].

Instantaneous topology extraction can be combined with
tracking of the critical points over time. Tricoche et
al. [TSHO1, TWSHO2] present a method for tracking the lo-
cation of critical points and detecting local bifurcations such
as fold bifurcations and Hopf bifurcations. An extension to
3D has been presented by Garth et al. [GTS04] together with
a visualization of the critical points paths in space-time.

With the “double gyre” Shadden et al. [SLMO05] gave an
example of an unsteady flow for which a saddle type criti-
cal point substantially deviates from the actual point of flow
separation. Recently, Wiebel et al. [WCW™*(09] demonstrated
the failure of vector field topology to find moving attractors
in simulation data of a rotating liquid suspension. They sug-
gested a procedural solution based on the evolution of den-
sity of virtual particles seeded in the flow.

The finite-time Lyapunov exponent (FTLE), by
some authors referred to as direct Lyapunov exponent
(DLE) [HalOla], is a measure for the stretching of an
infinitesimal neighborhood along a finite segment of a flow
trajectory.

Originally, the finite-time variant was used [GSO87,
YNO3] to quantify the predictability of dynamical sys-
tems, especially for atmospheric models. In a seminal pa-
per [HalO1b], Haller applied FTLE to velocity fields of fluid
flow and revealed their relationship to the Lagrangian coher-
ent structures (LCS), which can provide information on flow
separation similar to the separatrices of vector field topology
and often also correctly for strongly time-dependent flow as
well. Recently, Sadlo et al. [SW09] showed that LCS can
be obtained by generating streak manifolds along hyperbolic
trajectories, following a definition by Haller et al. [Hal00].
The idea in this approach is that in time-dependent 2D vec-
tor fields the role of saddle-type critical points is replaced
by hyperbolic trajectories, i.e. trajectories along which the
velocity gradient exhibits a negative determinant. Since this
work aims at the extraction of separating structures which
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could replace separatrices in the unsteady case, it has the po-
tential of being combined with the work presented in this
paper using the novel critical points as seed points.

Comparisons of FTLE with other criteria in terms of suit-
ability for visualization were made by several authors. Shad-
den et al. [SDMO06] showed that FTLE is able to reveal the
fine lobes of a chaotic vortex ring while producing tempo-
rally more consistent results than an approach based on VFT.
In a study done by Sadlo et al. [SPO7], FTLE was shown to
extract flow separation structures, but not the axes or centers
of rotating flow. In comparison with vector field topology,
this means that FTLE provides only partial information. In
the example of a spiral saddle critical point, where vector
field topology would give a 1D and a 2D invariant manifold
that can be interpreted as a vortex axis and a separation sur-
face, only the latter is reliably detected by FTLE.

Cucitore et al.’s non-local vortex detector [CQB99] uses
a reference frame that moves with a particle. In this frame,
the path of a neighbor particle is calculated for a certain time
window. Then, the distance of the end point from the origin
is divided by the arc length of the path. Low values of this
ratio indicate a vortex center. Haller proposed another vor-
tex detector M, [Hal05] that is objective, i.e. invariant not
only under Galilean transforms, but also for rotating frames
of reference. Finally, any local vortex detector designed for
steady flow can be adapted to unsteady flow by applying La-
grangian smoothing, i.e. by computing a weighted average
of the quantity obtained for the same particle at several time
steps [FPS*08].

Recently, several authors brought up the idea to adapt
the definitions underlying vector field topology for un-
steady velocity fields. Theisel et al. [TWHSO04] and Shi et
al. [STW™06] analyzed the behavior of path lines and sug-
gested a definition of time-dependent VFT for the special
case of periodic vector fields. Shi et al. [STW*08] suggest
to analyze the Poincaré map of the velocity field, which al-
lows to find critical points in time-periodic data sets such as
the Petri Dish and the Double Gyre example discussed later.

Kasten et al. [KHNHO09] investigated Galilean-invariant
counterparts for critical points in time-dependent 2D vector
fields. They propose minima of the acceleration magnitude,
after a temporal smoothing in the Lagrangian frame, as a re-
placement for critical points in unsteady velocity fields. This
generalization of critical points is also subject to investiga-
tion in this work.

3. Motion compensated critical points

In this section we present a method to find an optimal
Galilean frame of reference and to relate the critical points
found in the new frame to the critical points in the original
field. The resulting criterion based on the acceleration of the
flow is also applied in the next section.

We analyze Galilean changes of the frame of reference,
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with the goal of finding critical points that do not move in-
stantaneously. Intuitively it is clear that these are the zeros
of the acceleration field

(Vu)u+ aa—l; (1)

If in a vector field u(x,#) the point X is a critical point at
time £y, a first-order Taylor expansion of u(x, ) in both vari-
ables at (xXg,%p) shows that the critical point moves with the
instantaneous velocity

_10
~(Vu(xo,10)) ' 5 (%0.10)- @)

Assuming regularity of the Jacobian (i.e. a first-order critical
point), we can therefore say that the critical point stands still
if

3
5 (x0.10) = 0. 3)

Because we have also u(xg,7y) = 0, this is equivalent to the
condition that the acceleration field (1) has a zero at (xq, 7).
Now, since acceleration is a Galilean invariant quantity, its
zeros can be detected in any Galilean-transformed frame of
reference.

Therefore, the following algorithm can be used.
For each time step 7o

1. Compute the acceleration field and find its zeros.

2. For each zero (X, #p) compute the Galilean transform that
makes it also a zero of the velocity field (i.e., a criti-
cal point). This is simply a frame moving with velocity
ll(X(),l()).

3. In this frame of reference, analyze the instantaneous ve-
locity field for r =t#y:

a. compute eigenvalues and eigenvectors of the Jacobian
and determine the type of the critical point.

b. if it is a saddle point, compute tangents and optionally
separatrices.

c. use these for analyzing/visualizing the flow in a spatial
and temporal neighborhood of the critical point.

We call the points obtained by this procedure “motion com-
pensated critical points”. For a static vector field, motion
compensated critical points are a superset of the critical
points, because here, zero velocity implies zero acceleration.

3.1. Relation to classical VFT

For a time-dependent vector field, there is so far no corre-
spondence between the set of compensated critical points
and the set of critical points. But such a correspondence can
be established by creating a linear transition from the instan-
taneous flow to the unsteady flow (both at time #;). Let us
consider the 1-parameter family of fields

w(x,1) =a(x, 10+ k(t —19)) 4)

for 0 < k < 1. For k = 0 this is the instantaneous flow
up(x,7) = u(x,7) and for k = 1 this is the unsteady flow
u;(x,7) = u(x,t). By letting k vary from O to 1, acceleration
zeros of the fields uy either move continuously or they van-
ish at some point at domain boundaries or in bifurcations. By
only accepting acceleration zeros that can be tracked through
the entire range of 0 < k < 1, we obtain a set of critical points
each of which can be linked to a critical point in another
Galilean frame of reference having the additional property
that it stands still in that frame. The important point here is,
that we also obtain a connection of the corrected frame to
the critical points in the original frame. We can use this rela-
tion to restrict the set of motion compensated critical points
to those which also exist in the original frame of reference
in case the original frame has physical meaning for the ap-
plication.

In Section 5 we analyze the behavior of the motion com-
pensated critical points and show that the approach of mo-
tion compensated critical points is already sufficient to find
critical points in many cases.

3.2. Relation to the long-living features approach

The motion compensated critical points are a simple concept
by itself but they also give a new way to interpret the points
proposed by Kasten et al. [KHNH09]. We believe that their
suggestion to focus on long-living features is an important
step. They also show empirically that Lagrangian smoothing
greatly improves the feature extraction in unsteady flows.

The motion compensated critical points now give a phys-
ical interpretation for their approach, i.e., as critical points
which do not move instantaneously. The proposed point of
view also allows us to select the frame of reference which is
the appropriate one for topological analysis, i.e. in contrast
to Kasten et al. the approach of a motion compensated frame
gives a frame of reference which is the appropriate one for
further topological analysis. For example, since the correct
frame is known for the motion compensated critical points,
the topological information to show glyphs according to crit-
ical point classification is available. The link to the critical
points in the original frame is additional valuable informa-
tion which was not available before.

4. Critical points in Lagrangian frames of minimal
unsteadiness

However, we observed that the approach of motion compen-
sated critical points does not solve the “Petri dish” problem
which is not surprising as a linearly moving frame is obvi-
ously of no help here. We argue that the physically motivated
preference for Galilean transforms is not an absolute require-
ment for the problems in question. Firstly, the data to be an-
alyzed can represent a non-physical vector field. Secondly,
the data are not necessarily given in an inertial frame of ref-
erence, and hence the appropriate frame could be a rotating
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or a linearly accelerating one. In the “Petri dish” example,
a frame with its origin moving on a circle can be found that
makes the flow more steady and that produces a better topo-
logical result. It has to be emphasized that the goal of vector
field topology (and its targeted modifications) is structural,
not physical, information.

Instead of allowing now for translated, rotated, or other-
wise transformed frames explicitly, we pursue the idea of
assuming a Lagrangian view. That is, we use a frame of ref-
erence that moves with a particle of the flow (sometimes
called a massless particle). Due to the aforementioned crite-
rion of Perry and Chong, it is a reasonable objective to find,
for a given unsteady velocity field, a frame of reference that
makes it almost steady.

Now, of all particles in the flow the ones are chosen which

A are observing an almost steady velocity field and
B have small acceleration magnitude.

The first test assures that a spatial and temporal neighbor-
hood behaves approximately like a steady flow if viewed
from an observer moving with the particle. Under this con-
dition, the second test assures that the reference frame is
nearly Galilean as discussed in Section 3. Even though it is
not always possible to find a Galilean frame of reference, re-
quirement B ensures that we find a Lagrangian frame which
is as Galilean as possible. The two tests can be combined
in a number of ways, which we will explore in this paper.
Also, both tests require a spatial and temporal neighborhood,
the sizes of which are additional parameters of the proposed
framework.

The rate of change of a single variable at a given point
is described by the magnitude of its derivative. In three di-
mensional space the spatial rate of change is described by
the magnitude of the Jacobian. The the infinitesimal un-
steadiness at a given point is now the material derivative
(% = (u-V)+ 4,) of the velocity gradient J(x,1) = Vu(x,?)
which describes the relative velocities in a small neighbor-
hood of the particles. The material derivative is also referred
to as the Lagrangian derivative, since it describes the rate of
change along the path of a particle. In the next section we de-
scribe how we compute unsteadiness by following the path
of a particle.

Formally, unsteadiness can be expressed by

unsteadinessjoca (X, t) = ‘

D
Dyt H e

This expression reveals the formal analogy to the acceler-
ation magnitude, the measure for the motion compensated
critical points, %u(x, t) H .

The non-local unsteadiness is then defined as

unsteadiness;on—1ocal (X, t) =

Jorion
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Dt

DJ(B(x,w,r))Hdmdr ®

where 8(x, t) is the path of the particle starting at (x,t), and
Q is a neighborhood of the particle.

In the steady case critical points have velocity zero. In
this case also unsteadiness has a minimum, but not always
an absolute minimum. Therefore unsteadiness is consistent
with VFT in the steady case.

4.1. Measuring non-local unsteadiness

temporal
filter

athline .
P time t,

spatial filter
timet,

Figure 1: Computation of unsteadiness. The unsteadiness as
defined in Equation 6 can be computed by the combination
of a spatial and temporal filter.

We measure the non-local unsteadiness by spatial sam-
pling of the velocity field. We have to estimate the material
derivative from data sampled as discrete timesteps. We can
compute the material derivative by integrating a particle path
and computing finite differences. Figure 1 shows an illustra-
tion of this approach. Practically, the velocity gradient is es-
timated by using a small uniform sampling grid centered at
the desired point. If a temporal filtering is also needed, this
is repeated for a number of samples along the trajectory and
an average of the obtained unsteadiness values is taken.

At any given position p where the unsteadiness has to be
estimated the following steps are performed:

1. Place a small grid around p and estimate the Jacobian on
each sampling position.

2. Convolve the magnitudes of the temporal derivatives of
the Jacobians.

3. Convolve resulting values along the particle paths

The size of the sampling grid and the number of samples
have to be chosen depending on the scale of the features the
user is interested in. For the datasets in this paper we used
9 x 9 sampling grids, but it remains numerically stable also
for smaller sampling grid sizes. We suggest to work with
the smallest spatial and temporal filtering radii for which the
extracted critical points do not change noticeable when in-
creasing the radii.

4.2. Measuring critical point acceleration

The position of candidate critical points following criterion
A are at the minima of particle unsteadiness. To match these
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positions with positions at the next time step we use a simple
gradient descent approach: given the position from the pre-
vious time step, we follow the direction where the unsteadi-
ness decreases most until a minimum is reached. The criti-
cal point from the previous time step and the critical point
at the minimum are then marked as belonging to each other.
Based on the tracking information, the acceleration of a crit-
ical point can then be computed from positions at three con-
secutive time steps.

4.3. Classification

We aim at a topological analysis of the Lagrangian view of
the flow, i.e. at identifying material particles around which
the fluid behaves attracting, repelling or saddle-like. Since
we are identifying material particles which are critical points
this classification is straightforward. We can simply use the
eigenvalues of the Jacobian of the particle velocity. Depend-
ing on the type of flow this allows to extract critical points
classifications such as source, sink, saddle, focus and spiral
saddle in case of unsteady flow.

5. Results
5.1. “Double Gyre”
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Figure 2: “Double gyre” field att =0 andt = 2.5.

This unsteady 2D vector field was used by Shad-
den [SLMO5] to demonstrate that saddles of vector field
topology can deviate from the point of actual saddle behav-
ior. The field is defined by

u(x,y,r) = —mAsin(nf(x,7)) cos(my)

Viont) = mAcos(nf () sin(my) L f(rr) )

where
f(x,1) = esin(or)x® + (1 — 2esin(wr)) x 8)

and A = 0.1,0 = n/10,& = 0.25. Figure 2 shows this ve-
locity field at two time steps. The important feature in this
example are two moving vortices in the center and two mov-
ing positions where the velocity is zero at the top and the
bottom of the image. As Shadden already noticed the posi-
tion of zeros of velocity do not capture the positions of ma-
terial separation. They suggested maxima of FTLE which
does capture the real position of flow separation at least for
the bottom critical point. In Figure 3 we compare the sug-
gested quantities. In (a) and (b) we show velocity and ac-
celeration magnitude for comparison. In (c) we can see that

simple Lagrangian filtering of the velocity magnitude does
not produce relevant features. (d) As we can expect from the
discussion in Section 3 filtering acceleration magnitude al-
ready produces some interesting results. There are two min-
ima at the top and at the bottom which are shifted from the
positions of the VFT in Figure 2. (¢) The unsteadiness also
captures all four relevant positions and coincides with (d)
and (f) for the bottom critical point. (f) FTLE captures both
the bottom separation and the top separation well if we com-
bine forward-time and backward-time FTLE. In Figure 4 we
can see that for the bottom critical point the four measures
behave essentially the same, whereas instantaneous methods
fail to produce the correct results.

W™

ROl RO

S rTY

(a) velocity magnitude

(b) acceleration magnitude

o)

(d) accel. magnitude filtered

r —

—

(c) velocity magnitude filtered

ﬂ Y

=@ [

(f) FTLE

(e) unsteadiness

Figure 3: Velocity magnitude (a) shows critical points in
blue. The one in the bottom center is the saddle point to
be studied. The minimum of acceleration magnitude (b) is
shifted to the right. The same quantities, but Gaussian-
filtered over the time range [—%, %] (¢,d), show a minimum
somewhere in between. Unsteadiness (e) has a clear mini-
mum and FTLE (f) a clear maximum at the same spot. The
transfer functions are chosen such that minima (blue) and
maxima (red) are clearly distinguishable.

5.2. “Petri Dish”” example

Recently, Wiebel et al. [WCW*09] presented a numerically
generated vector field which shows that VFT can fail not
only for saddle type critical points, but also for a sink. They
showed that the critical point deviates strongly from the
point where particles are actually attracted to. They found a
local FTLE maximum in the vicinity of this rotating attrac-
tor. They also suggested a method to locate this sink using a

(© 2010 The Author(s)
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Figure 4: Comparison of methods on the dynamic sad-
dle point on the x-axis of the “double gyre”. The x co-
ordinate is plotted against the time for a full period. All
methods based on a time window (solid lines) essentially
agree. The unsteadiness minimum (red) almost equals the
minimum of velocity magnitude (black), while the FTLE
maximum (green) and the minimum of acceleration magni-
tude (blue) have slight offsets. The instantaneous methods
(dashed lines) clearly deviate from these. The zero of the ac-
celeration (blue) has mainly an amplitude error, while the
critical point (black) also has a phase error of about 0.8.

Figure 5: “Petri Dish” field att =0 andt = 1/2.

convergence measure based on virtual particles. Their simu-
lation data set describes the aggregation behavior of cells im-
mersed in a nutrient solution, when the Petri dish is placed
at an appropriate radius onto a rotating disk. We present a
synthetic analogue of this data set which captures the same
essential behavior.

The vector field is defined on the unit disk as follows

x=(1-x*—y*) (=0 (y—rsint) —a(x— rcost))
y=(1—-x>—y*) (@ (x—rcost)—a(y—rsinr))
with the parameters chosen as r = %,(0 =a=1.
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Without the factor 1 — x> — y2, this is a linear field having
a focus sink at the point (x,y) = (rcost,rsint). The eigen-
values of this critical points are —a =+ i®. The critical point
rotates on a circle with radius r at an angular velocity of 1,
and the linear field moves accordingly. The role of the factor
1—x* — y2 is to cause the field to be zero on the unit circle.
It does not influence the position of the critical point.

In our analytical example we confirm the results
from the numerically obtained vector field by Wiebel et
al. [WCW*09] (see Figure 6), and we measured the errors
as a function of the temporal filter support T (see Figure 7).
Note that we have chosen the parameter T in the Figure such
that the resulting critical points do not change their position
for larger values of T anymore. Since the field is periodic in
time, the correct attractor can be computed as the fixed point
of the flow map corresponding to one period. It turns out
that it has a radius of 0.456 and a phase shift of -1.042 (or
59.7 degrees) as compared to the rotating critical point. Both
the FTLE maximum and the unsteadiness minimum tend to-
ward the rotating attractor with growing 7. The other two
of the examined quantities, acceleration magnitude and ve-
locity magnitude, have no local extremum near the rotating
attractor. They have a local extremum near the critical point,
but only for smaller values of T'.

HER
HER

Figure 6: Top row: extrema of FTLE (a), unsteadiness (b),
acceleration magnitude (c), and velocity magnitude (d) us-
ing a temporal filter with support [-1.5, 1.5]. Bottom row:
The same with temporal filter support [-5.0,5.0]. Now, (e)
and (f) almost coincide, while in (g) and (h) the extremum
has disappeared. Color maps are chosen to isolate the local
extremum.

()

5.3. Vortex street example

The example used here is a time-dependent 3D simulation
of a vortex street, from which the 2D field in the symme-
try plane has been extracted. As is, the field does not have
any critical points. However, in this special case, after sub-
tracting a constant horizontal velocity, the vortex centers ap-
pear as critical points. In this example we can therefore ex-
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Figure 7: With increasing support length of the temporal
smoothing filter, the errors in radius (a) and phase (b) of the
FTLE maximum (solid line) and the unsteadiness minimum
(dashed line) w.r.t. the correct rotating attractor tend to zero.

pect the motion-compensated critical points to perform op-
timally. The modified velocity field is shown in the back-
ground LIC image used in Figure 8. Of course, the LIC im-
age is only valid for the critical points moving exactly at
the subtracted constant velocity, and also the critical points
depend on the subtracted velocity. The saddle type critical
points are affected much more than the vortex centers, where
it is mainly the y-coordinate that is affected. Since the vor-
tices move with near constant velocity, it is not surprising
that the method of motion compensated critical points works
well here (Figure 8a). The unsteadiness method (Figure 8b)
works well, although the two methods deviate in the right
part of the images, where it is not absolutely clear which
constant horizontal velocity shift is valid. In this example,
temporally filtered velocity magnitude and also FTLE fail
completely.

The vortex street example shows clearly that both work-
ing methods have false positives, therefore it is important to
view the resulting points as feature candidates, not as fea-
tures. Both the motion compensated critical points and the
points of minimal unsteadiness yield the information about
a frame in which a topological analysis can be performed.
Based on the eigenvalues of the critical point, a reduction of
the set of feature candidates could be done.

Table 1 summarizes our evaluation results as discussed in
this section.

“Double “Petri Vortex

Gyre” Dish” street
vel. mag. filtered — — —
FTLE + + -
accel. mag. filtered + - +
unsteadiness + + +

Table 1: Summary of the evaluation results.

+
- 14{,@7:!"\\\\ 7

(d) FTLE

Figure 8: By subtracting a constant (empirically found) ve-
locity, the vortices appear in the background LIC images
used in (a)-(d). Minima of (temporally filtered) acceleration
magnitude and unsteadiness (b) are able to detect the vor-
tex centers, in contrast to velocity magnitude (c) and FTLE
(d). The color maps have been chosen such that the local ex-
trema become visible. In addition, the set of extrema (after
thresholding) is depicted by the white crosses.

6. Conclusions

In this paper we have proposed a definition for critical points
in unsteady flow fields. We examine previous approaches
and then combine them with a novel definition of unsteadi-
ness. Our suggestion is to use a combination of the motion
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compensated particles and unsteadiness as discussed in Sec-
tion 4. The proposed approach is based on the realization that
topological structures can be meaningful only when there
is a frame of reference in which the topology of the vector
field is stable over a finite amount of time. Another impor-
tant point is the realization that since topological structures
should cover regions of particles which share common be-
havior the extracted critical points should behave like mate-
rial elements. Therefore it is important that there is as little
flux over the defined topological structures as possible. The
proposed definition achieves this requirement naturally by
selecting particles directly.

In future work we would like to perform numerical studies
on additional numerical flow simulation results. The main
problem here is to find locations in real world data sets where
it is possible to establish some form of “ground truth” that
allows a valid comparison.

A second open question is how we can improve the un-
steadiness criterion in the case of large regions of very simi-
lar low unsteadiness values. In these cases additional criteria
for regions of low unsteadiness where no distinct minimum
exists would be beneficial.

Another open issue is a unified approach to select optimal
extends for temporal and spatial filtering. These are addi-
tional parameters inherent in most non-local feature extrac-
tion algorithms and it would increase the practical applica-
bility of the presented approach if these parameters could be
specified automatically.

The computation cost of the unsteadiness values is dom-
inated by the cost of the particle integration. In the current
implementation we use an adaptive Runge-Kutta-Fehlberg
implementation of fourth order. For long integration times
the integration takes more than 90% of the computation
time. New ideas to reduce the required amount of integration
steps, e.g. using a smart candidate pre-selection, therefore
could have strong impact on the required computation time.
Currently the computation of unsteadiness for a 256 x 128
structured grid over 100 timesteps requires almost 11 min-
utes on a single processor of a Core i7, 2.9 GHz CPU. Us-
ing the gradient descent approach discussed in Section 4.2
would allow to avoid recomputing the unsteadiness for the
whole field at all time steps.

The independence of unsteadiness values at each position
of the data set suggests a parallel implementation. Such an
implementation could, in principle, compute the unsteadi-
ness for all voxels simultaneously. We would therefore ex-
pect a GPU implementation of the unsteadiness criterion to
run interactively. Even though the current implementation
focuses on the two dimensional case we do not expect con-
ceptual difficulties in three dimensions. A more efficient,
GPU-accelerated implementation will be important to ana-
lyze the suggested approach also for three dimensional data
sets.
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