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Abstract. A vast amount of soft shadow map algorithms have been
presented in recent years. Most use a single sample hard shadow map
together with some clever filtering technique to calculate perceptually or
even physically plausible soft shadows.

On the other hand there is the class of much slower algorithms that
calculate physically correct soft shadows by taking and combining many
samples of the light.

In this paper we present a new soft shadow method that combines the
benefits of these approaches. It samples the light source over multiple
frames instead of a single frame, creating only a single shadow map
each frame. Where temporal coherence is low we use spatial filtering to
estimate additional samples to create correct and very fast soft shadows.

1 Introduction

Shadows are widely acknowledged to be one of the global lighting effects with
the most impact on scene perception. They are perceived as a natural part of
a scene and give important cues about the spatial relationship of objects. In
reality most light sources are area light sources and these create soft shadows.
We are not used to hard shadows and perceive them as distinct objects. For the
realistic shadowing of a scene, soft shadows are therefore considered a must. Soft
shadows consist of an umbra region where the light source is totally invisible and
a penumbra region where only part of the light source is visible.

Typical soft shadowing methods for real-time applications approximate an
area light by a point light located at its center and use heuristics to estimate
penumbrae, which leads to soft shadows that are not physically correct [1, 2].
This is because the area visibility that is the result of an area light interacting
with a scene is replaced by a simpler from point visibility.

As the human eye is not very sensitive to the correctness of soft shadows,
the results can be acceptable from a perceptual point of view or can even be
physically plausible. Additionally most inherent shadow map artifacts like alias-
ing are often hidden through the low frequency soft shadows. Nevertheless some
perceptually concerning artifacts remain: Overlapping occluders can lead to un-
natural looking shadow edges, or large penumbrae can cause single sample soft
shadow approaches to either break down or become very slow (see Figure 1, 5).
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Fig. 1. From left to right : our Method (634FPS), bitmask soft shadows with a 8x8
search area (156 FPS), our Method with a bigger penumbra (630FPS) and bitmask
soft shadows with the same penumbra and a 12x12 search area (60FPS). Even very
good single sample soft shadow methods show some artifacts, like biasing problems
and contact shadow undersampling that can be avoided by using multiple samples.

Accurate methods use light source sampling: The idea is to calculate soft
shadows by sampling the area of the light source. Hard shadow calculations
are performed for every sample and the results are combined [3]. The primary
problem of these methods is that the number of samples to produce smooth
penumbrae is huge. N samples produce N − 1 attenuation levels. High-quality
soft shadows need 256 or more to create the 256 attenuation levels available with
an 8Bit color channel. If we have to render a shadow map for each sample and
store all the shadow maps for the final combination pass, real-time frame rates
become unlikely, even for simple scenes. But under the assumption of a light
source with uniform color and dense enough sampling of the light source, the
result of these approaches are correct soft shadows.

Our approach can be described as a combination of light source area sampling
over time and single sample filtering:

– The area sampling is done one sample per frame by creating a shadow map
from a randomly selected position on the area light. For each screen pixel
the hard shadow results obtained from this shadow map are combined with
the results from previous frames (accumulated in a screen space buffer called
the shadow buffer) to calculate the soft shadow for each pixel.

– When a pixel becomes newly visible and therefore no previous information is
available in the shadow buffer, we use a fast single sample approach (PCSS
with a fixed 4x4 kernel) to generate an initial soft shadow estimation for this
pixel.

– To avoid discontinuities between sampled and estimated soft shadows, all
the estimated pixels are augmented by using a depth-aware spatial filter to
take their neighborhood in the shadow buffer into account.

The main contribution of this paper is the application of temporal coherence
(through the use of the shadow buffer) to the soft shadowing problem together
with spatial filtering (penumbra estimation and pixel neighborhood) in a soft
shadow mapping algorithm that is even faster than a very fast variant of PCSS
(see Section 4 for details), but produces accurate real-time soft shadows. Ad-
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ditionally we extend temporal reprojection to handle moving objects such as
dynamic shadow casters and receivers.

2 Previous Work

Soft shadows are a very active research topic, therefore we can only give a brief
overview of the most relevant publications for our work. A still valuable survey
of a number of different soft shadow methods is due to Hasenfratz et al. [1].
There are two major paradigms: methods that use shadow volumes (object-based
algorithms) and methods that use shadow maps (image-based algorithms). We
concentrate entirely on algorithms that employ shadow mapping due to their
higher performance in real-time applications.

Filtering : Since physically based soft shadow mapping requires many light
source samples, it was previously considered too costly for real-time rendering.
Therefore a number of algorithms were proposed that offer cheaper approxima-
tions. Most popular among those is Fernando et al.’s [4] Percentage Closer Soft
Shadows (PCSS), which estimates the soft shadow from a single sample and
employs a blocker search to estimate the penumbra width and then uses PCF-
filtering accordingly to soften the shadows. Very fast speeds can be achieved
by using small fixed sized kernels and only adapting the sample spacing to the
penumbra estimation. Unfortunately this introduces artifacts for large penum-
brae (see Figure 5). We will use this approach for our initial guess for freshly
disoccluded fragments due to its speed. Annen et al. use a weighted summation
of basis terms [5]. Using a variation of convolution shadow maps and the average
blocker search from Fernando et al. [4], Annen et al. [6] extract area light sources
from environment maps.

Back projection: A whole class of methods use back projection to get a more
physically based estimation of the soft shadow [7–9, 2]. These methods treat
the shadow map as a discrete approximation of the blocker geometry. By back
projecting shadow map samples onto the light source, an accurate calculation
of the percentage of light source visibility can be done. Convincing results are
produced, but a region (related to the size of the penumbra) of the shadow map
has to be sampled for each fragment, which becomes costly for large penumbrae.

Sampling : Maybe the most straightforward approach to computing soft shad-
ows is by sampling an area or volume light source. Such methods are mostly
targeted at off-line or interactive rendering. Heckbert and Herf [3] propose to
sample the light source at random positions, render the scene and accumulate
the results. Our approach moves this method into the real-time domain by ex-
ploiting temporal coherence. Agrawala et al. [10] create a layered attenuation
map out of the shadow maps, which allows interactive frame rates. St-Amour
et al. [11] combine the visibility information of many shadow maps into a com-
pressed 3d visibility structure which is precomputed, and use this structure for
rendering.

Temporal reprojection: Finally, temporal reprojection was used by Scherzer
et al. [12] to improve the quality of hard shadow mapping and by Velázquez-
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Armendáriz [13] and Nehab et al. [14] in a more general way to accelerate real-
time shading. Our algorithm takes up the idea of temporal reprojection and uses
it to compute shadows from area light sources.

3 The Algorithm

If we want to find the contribution of an area light source to a specific fragment,
we have to calculate the fraction of the area of the light source that is visible
from the fragment. For our purposes we will use the reverse value, which we call
the occlusion percentage or soft shadow result ψ(x, y) for a fragment at screen
space position (x, y). ψ(x, y) is 0 for a fragment that is illuminated by the whole
area of the light source and 1 for a fragment that is not illuminated by the light
source at all. Due to the fact that most calculations we perform are done per
fragment and for the sake of notational simplicity, we will only use the (x, y)
notation when introducing a function and will afterward omit it.

3.1 Estimating Soft Shadows from n Samples

To make the calculation of the soft shadow value feasible for rasterization hard-
ware, we use sampling and shadow maps. We approximate an area light source
by n different point light sources and compute a shadow map for each of them.
A shadow map allows us to evaluate for every screen space fragment if it is
illuminated by its associated point light.

τi(x, y) =

{
0 lit from point light i
1 in shadow of point light i

(1)

τi(x, y) is the result of the hard shadow test for the ith shadow map for the
screen space fragment at position (x, y). Under the assumption that our point
light placement on the area light source is sufficiently random, the soft shadowing
result ψ (i.e., the fractional light source area occluded from the fragment) can

be estimated by the proportion ψ̂n of shadowed samples

ψ̂n(x, y) =
1

n

n∑
i=1

τi(x, y) (2)

The number of shadowed samples nψ̂n has a Binomial distribution with vari-
ance nψ(1− ψ). We can thus give an unbiased estimator for the variance of the

proportion ψ̂n as

ˆvar(ψ̂n(x, y)) =
ψ̂n(x, y)(1− ψ̂n(x, y))

n− 1
(3)

The importance of Equation 3 is that it allows us to estimate the quality of our
soft shadow solution after taking n samples. We will later use this estimate (the
standard error derived from this estimate) to judge if sampling alone will give
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sufficient quality. Table 1 shows these formulas applied to some real-world τi and
increasing sample sizes. Please note that although the standard error decreases
when the sample size is increased, the estimator for the standard error is not
guaranteed to do so.

Table 1. Evaluation of the presented formulas for one fragment. Increasing the sample
size generally reduces variance and standard error, ŝ =

√
ˆvar

n 1 2 3 4 5 6 7

τn 1 0 1 1 1 0 1

ψ̂n 1.00 0.50 0.67 0.75 0.80 0.67 0.71

ˆvar(ψ̂n) 0 0.25 0.11 0.06 0.04 0.04 0.03
ŝ 0 0.50 0.33 0.25 0.20 0.21 0.18

3.2 Temporal Coherence

We want to be able to solve Equation 2 iteratively, so that we only need to
create one shadow map each frame. We will then use the temporal coherence of
the current frame with previous frames to increase convergence.

The temporal coherence method introduced by Scherzer et al. [12] improves
the resolution of standard hard shadow maps. It is based on the assumption
that most screen space fragments stay the same from frame to frame. It can
be determined which fragments of the new frame have also been present in the
last frame by reprojecting (to account for camera movement) fragments from
the new frame into the old and comparing their respective depths. If the depth
difference is smaller than a predefined ε, the two fragments are considered equal
and therefore fragment data from the previous frame is reused. If dk(x, y) is the
depth of the fragment at position (x, y) of the current frame and dk−1(x, y) is
the same for the previous frame, then the test for fragment equality is given by

|dk(x, y)− dk−1(x, y)| < ε (4)

If on the other hand the difference is greater, the fragment was not present in
the last frame and is therefore new (a.k.a. disoccluded) and no previous data for
this fragment is available.

For our approach we want to be able to compute ψ̂n iteratively for each
frame and fragment from the information saved from previous frames together
with the information gathered for the current frame. We do this by keeping
ρn(x, y) :=

∑n
i=1 τi(x, y) from the previous frame. ρn stores all the shadow map

tests already performed for the n previously calculated shadow maps. We also
need the sample size n, which is equal to the number of shadow map tests we
have already performed for this fragment. If the fragment was occluded in the
last frame, we get n = 0 and ρn(x, y) = 0 because no previous information is
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available. Therefore n can be different for each screen space fragment. We can
now calculate ψ̂cur(x, y) for the current frame as

ψ̂cur(x, y) =
τcur(x, y) + ρn(x, y)

n(x, y) + 1
(5)

This formula only needs access to n (the count of samples available for this
fragment stored in the previous frame), ρn (i.e. sum of the shadow map tests up
to the previous frame) and the current shadow map. We provide access to these
values by storing in each frame the updated sample size n + 1 and τcur + ρn
for every fragment into a screen sized off-screen buffer called the shadow buffer
for use in the next frame. Now this formula can be evaluated very quickly in
a fragment shader and real-time frame rates pose no problem. Note that we
also have to store the depth of each fragment to be able to evaluate the test in
Equation 4.

Fig. 2. Convergence after 1,3,7,20 and 256 frames. Upper Row : Sampling of the light
source one sample per frame (using Equation 5); Lower Row : Our new algorithm.

The disadvantage of this approach is that for newly disoccluded fragments
(i.e. fragments with a small n) the results have large errors (see also Figure 2).
This becomes clearer when we take a look at the example in Table 1: At n = 2 we
have a standard error of 0.5, which means the real ψ is probably inside of 0.5±0.5,
so the quality of ψ̂2 as an estimate is really bad. A second closely connected
problem that aggravates the situation even further is discontinuity in time – the

difference between ψ̂n and ψ̂n+1 is still large. For instance
∣∣∣ψ̂1 − ψ̂2

∣∣∣ = 0.5 which

means the soft shadow results can be 128 attenuation values apart. This is a
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noticeable jump and will cause flickering artifacts. In the next section we will
show how to avoid this by using spatial filtering.

3.3 Spatial Filtering

Due to the use of temporal coherence and Equation 5 we have already con-
structed a soft shadow algorithm that takes little time to evaluate each frame,
but two closely related problems remain:

– For a good estimation of ψ with ψ̂n for a fragment with temporal coherence
alone we need the fragment to be visible for many frames.

– During the frames following the disocclusion of a fragment, ψ̂n(x, y) has a
large standard error and may change drastically, resulting in flickering of
these fragments (see also Figure 2, upper row).

Our first observation in this respect is that for the first few frames after a
fragment has been disoccluded, a single sample soft shadow mapping approach
will probably have better quality than using ψ̂n (a.k.a the sampled approach),
which is also suggested by the high variance in this case. So our first improve-
ment over using only Equation 5 is to use a very fast single sample soft shadow
approach, PCSS, as a starting point and then refine it by using Equation 5 (see
Figure 3). Note that PCSS itself is also a spatial filter.

For the refinement, we have to initialize n and ρn for the sample generated
using PCSS. The PCSS shadow test will give us a result in the range [0..1].
The most natural choice is here to use this result directly as ρn and set n = 1.
Note that it can make sense to use higher values for n, meaning that the PCSS
sample will be of greater weight than the following “normal” samples. Using
bigger values for n can lead to faster convergence if the PCSS result is near
to the correct solution (see Figure 3). This approach can considerably shorten
the period a fragment has to be visible to achieve a good estimation of ψ with
ψ̂n. Please note that other single sample soft shadow approaches could also be
used together with our sampling approach. We have chosen PCSS mainly for its
speed.

For small n, each new sample potentially causes drastic changes to the es-
timated soft shadow solution. On the one hand these changes need to happen
to guarantee a swift convergence, but on the other hand we want to avoid the
resulting flickering artifacts in the rendered shadows. Therefore we propose to
introduce an additional smoothing by using a neighborhood filter in screen space
just for the rendered shadows, without any impact on the soft shadow informa-
tion (namely n+1 and ρn+1) stored in the shadow buffer for the next frame (see
Figure 2, lower row for results). Section 3.3 will describe in detail how this filter
is constructed.

We still have to decide when to apply the neighborhood filtering. For this
we use the standard error of the variance estimator of Equation 3. This gives us
an estimated error for our sampling approach. We choose an error threshold t
down to which neighborhood filtering will be used. If the error is smaller, only
sampling will be applied.
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Fig. 3. Convergence for the first 4 frames when sampling the light source one sample
per frame (upper row) can be greatly increased by using PCSS as its first sample (lower
row). Here we have used n = 4 for the PCSS sample, so it is weighted like 4 normal
samples.

Neighborhood Filter The neighborhood filter should remove noise and flick-
ering artifacts in the resulting shadow by smoothing. We use a box filter and
only include samples within a certain depth range of the current fragment, since
those are likely to have a similar ψ̂n(x, y). The main question is how to set the
filter width to achieve the correct amount of smoothing. Since we want to render
soft shadows, a good filter size is given by the penumbra width.

Although we don’t know the exact penumbra width, we can estimate it ef-
ficiently. We base our estimation on the one used in Fernando [4] because it is
fast and simple. It assumes blocker, receiver and light source are parallel and is
given by

pw =
near

deptheye

receiver − avg(blocker)

avg(blocker)
lightsize (6)

where pw denotes the penumbra width (projected to screen space) we want to
estimate, receiver is the depth of the current fragment and lightsize is the size
of the light source. near is the near plane distance and deptheye the fragment
depth for the projection.

The calculation of the average blocker depth avg(blocker) is one of the costli-
est steps in this algorithm. It works by averaging the depths of the k nearest
texels in the shadow map for each fragment each frame. In our approach, we
can avoid doing this by using temporal coherence again: When a fragment first
becomes visible we perform PCSS, including blocker depth estimation, anyway.
We save this value avg(blocker), generated from k depth samples, as a start-
ing value, and in each successive frame we refine it using one additional depth
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sample depthi from the new shadow map:

avg(blocker)i =
depthi + avg(blocker)i−1(i− 1 + k)

i+ k
(7)

3.4 Accounting for Moving Objects

The original temporal reprojection paper by Scherzer et al. [12] does not account
for moving objects and up to now we have only accounted for camera movement
by reprojection. If we want to be able to display moving objects that cast and
receive soft shadows, we have to investigate how these influence the evaluation
of our algorithm. Moving objects will appear in the shadow map as potential
casters of dynamic shadows and also in the scene as dynamic objects where
shadows are cast upon. With moving objects disocclusions become very frequent
and therefore temporal reprojection does not work as well.

Our approach is therefore to first identify moving objects and shadows that
are cast by moving objects in order to handle these cases. First we change
the generation of the shadow map by including for each texel the informa-
tion whether it belongs to a moving object or not. Because the depth in the
shadow map is always positive we can store this inside the depth by using the
sign, therefore generating no additional memory cost. A negative sign means
that this fragment is from a moving object (and therefore a potential dynamic
shadow caster). We can now retrieve this information for each screen-space frag-
ment when we do the shadow map test. If we have a negative depth we know
that the shadow that falls on this object is cast by a moving object.

If we detect such a case we must assume that the data stored in the shadow
buffer for the current fragment is probably invalid and we therefore handle it
like a normal disocclusion and apply PCSS. This alone would lead to unsat-
isfactory results because we generate a different shadow map each frame on a
different position on the light source. This would cause the PCSS shadow to jump
around each frame. Therefore we additionally apply the neighborhood filter from
Section 3.3 to smooth out any jumps and decrease discontinuities between the
primarily PCSS based moving shadows with the sampled static shadow.

4 Implementation and Results

We implemented the algorithm in 3 passes: first, render shadow map, second,
render into new shadow buffer (applying algorithm) and final color buffer (use
shadow buffer from previous frame as input) and third copy final color buffer to
framebuffer.

For our tests, we used an Intel Core 2 Duo E6600 CPU with an NVIDIA
280GTX graphics card and DirectX 10. All images were taken using shadow
maps with a resolution of 10242. For selecting the sample position on the area
light we used a Halton sequence. Other quasi-random sequences showed similar
behavior. The screen space neighborhood filter uses a Poisson disk centered at
the current fragment with a fixed sample size (16 samples).
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The shadow maps were rendered using standard uniform shadow mapping,
a 32bit floating point texture and linear depth. Hardware 2x2 PCF filtering was
not used. We used the multiple render target functionality for the second pass
to render into the shadow buffer and into an 8bit RGB buffer. The shadow
buffer is a 4-channel 16bit floating point texture. It contains ρn, n, the linear
depth of the fragment and the average blocker depth avg(blocker). To have
meaningful neighborhood texels at the frame buffer borders, we have chosen
the resolution of the shadow buffer about 5% larger than the framebuffer, so if
we assume a 800x600 framebuffer, the shadow buffer would be 840x630. Please
note that 5% was sufficient for our movement speeds. If faster movements occur,
a larger “overscan” should be choosen. Two instances of the shadow buffer are
required (one for reading and one for writing), resulting in an additional memory
requirement of 2 × 840 × 630 × 4 × 2 ≈ 8MB. We used an error threshold of
t = 1/50.

Fig. 4. A sample walkthrough in one of our test scenes with our new method and with
PCSS using 16/16 samples for blocker/PCF lookup.

Our goal was to develop a soft shadow approach that should be faster than
PCSS, but provide at the same time better quality, therefore we compared to a
fast PCSS version using only 16 texture lookups for the blocker search and 16
texture lookups for the PCF kernel. Figure 4 shows a benchmark of a typical
walkthrough of one of our test scenes, using a viewport of 1024x768 pixels.
Timings are given in ms. Our algorithm tends to be slower if there are many
disocclusions, because here it has to perform the blocker search that also PCSS
has to perform. Our shader is more complex (more ifs) than the PCSS shader
so we can be slower then PCSS in such circumstances. The used PCSS16 always
performs 16+16 lookups, while our shader only has to do those 16+16 lookups
for disocclusions. Our shader performs at least one shadow map lookup and one
shadow buffer lookup every frame. 16 lookups are used for the neighborhood
filter, which is the case when the standard error is higher then the threshold t for
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Fig. 5. From left to right : Overlapping occluders (our Method, PCSS 16/16) and bands
in big penumbras (our Method, PCSS 16/16) are known problem cases for single sample
approaches.

every fragment were the single sample soft shadow approach is active. Figure 5
shows typical problems of PCSS that are solved with our approach. A better
comparison can be seen in the accompanying videos. We also did a comparison
with a more elaborate PCSS with 32 lookups for the occluder search and 32
lookups for the PCF kernel, which was considerably slower than our algorithm.

4.1 Limitations

Although we presented a method to handle moving objects, there is still room for
improvements. Especially when dynamic shadows overlap with static shadows
with large penumbrae, some flickering artifacts remain (see the accompanying
videos).

5 Conclusions and Future Work

We presented a very fast soft shadow approach based on shadow maps that
uses temporal reprojection for achieving physical correctness. Where temporal
reprojection is insufficient we use spatial filtering to allow for soft shadows on
recently disoccluded fragments.

As a future direction of our research we would like to investigate multiple
light sources because they lend themselves naturally to this approach: nowhere
do we assume that the soft shadow data in the shadow buffer comes from the
same light source, so we can extend the approach to multiple light sources simply
by calculating a shadow map for each light source each frame. The values rhon
and n can then accumulate contributions from all the light sources.

Moving light sources could also be possible. We think that an approach that
weights older light source samples less, together with age factors for shadow
buffer fragments, could work. Moving objects would benefit from calculating
each frame a second shadow map in the center of the light source. Maybe the
two shadow maps could be calculated in a combined fashion. Our statistical
approach is now based on uniform distributions of samples. Maybe non-uniform
distributions could improve convergence.
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