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Interactive Visual Analysis of Perfusion Data

Steffen Oeltze, Helmut Doleisch, Helwig Hauser, Philipp Muigg, and Bernhard Preim

Abstract —Perfusion data are dynamic medical image data which characterize the regional blood flow in human tissue. These data
have a great potential in medical diagnosis, since diseases can be better discriminated and detected at an earlier stage compared to
static image data. The wide-spread use of perfusion data is hampered by the lack of efficient evaluation methods. For each voxel,
a time-intensity curve characterizes the enhancement of a contrast agent. Parameters derived from these curves characterize the
perfusion and have to be integrated for diagnosis. The diagnostic evaluation of this multi-field data is challenging and time-consuming
due to its complexity. For the visual analysis of such datasets, feature-based approaches allow to reduce the amount of data and
direct the user to suspicious areas.

We present an interactive visual analysis approach for the evaluation of perfusion data. For this purpose, we integrate statistical
methods and interactive feature specification. Correlation analysis and Principal Component Analysis (PCA) are applied for dimension
reduction and to achieve a better understanding of the inter-parameter relations. Multiple, linked views facilitate the definition of
features by brushing multiple dimensions using non-binary and composite brushes. The specification result is linked to all views
establishing a focus+context style of visualization in 3D. We discuss our approach with respect to clinical datasets from the three
major application areas: breast tumor diagnosis, ischemic stroke diagnosis as well as the diagnosis of the coronary heart disease
(CHD). It turns out that the significance of perfusion parameters strongly depends on the individual patient, scanning parameters and
data pre-processing.

Index Terms —Multi-field Visualization, Visual data mining, Time-varying volume data, Integrating Infovis/Scivis

<+

1 INTRODUCTION

Compared to static image data, where the morphology of anatorfétent parameters are derived from the same time-intensity curve that
and pathological structures is represented with high spatial resofiparacterizes the CA enhancement, it is likely that some parameters
tion, dynamic image data characterizes functional processes, suclterselate with each other. We apply a correlation analysis and a PCA
metabolism and blood flow, which is often essential to detect diseagesichieve a better understanding of the inter-parameter relations and
at an early stage or to discriminate pathologies with very similar mdie simplify and to speed-up the diagnosis by reducing the complexity
phology. Important examples of dynamic medical image data are furad-the multi-field data. Besides its complexity, the non-standardized
tional MRI, where activations of brain areas are measured, dynanpiarameter domain which depends on the scanning protocol compli-
SPECT, where metabolic processes are imaged and perfusion imegjes the diagnostic evaluation. For the visual analysis of such data,
ing, where the blood flow is represented. We focus on perfusion ddeature-based approaches allow to direct the user to suspicious regions
which are acquired to support essential diagnostic tasks, e.g., cerebrdl to reduce the amount of data to a representative subset. Our ap-
perfusion for stroke diagnosis, the assessment of different types dmdach integrates methods for interactive feature specification of high-
stages of tumors, and perfusion of the myocardium (heart muscle) fimensional complex features in multi-field data. Multiple, linked
CHD diagnosis. views facilitate the definition of features which can be complex and/or
In perfusion imaging, the distribution of contrast agents (CA) ibierarchically described by brushing multiple dimensions. Non-binary
registered to assess blood flow and tissue kinetics. For each voxdprashes account for the uncertainty involved in the inspection of a
time-intensity curve characterizes the CA enhancement. How longhien-standardized parameter domain. Furthermore, they represent a
takes until the maximum amount of CA is delivered, which maximurfiatural mapping of irreversibly damaged or malignant tissue, suspi-
is achieved as well as other parameters are derived from these cuiegs or reversibly damaged tissue and healthy tissue to focus, near-
for medical diagnosis. focus and context. The specification result from all views is linked
The derived parameters represent a special instance of multi-fiéfc® 3D-view, establishing a focus+context style of visualization. The
data which is becoming more and more important in medi(;]rﬁh [ 3D-representat|0n of _the_ perfu3|on pare_lmet_ers within their anatomic
[5]. They are substitutes for physiological parameters such as tunf@ntext allows a localization of the specification result.
perfusion and vessel permeabilif§] [ The integrated analysis of sev- Our visual analysis approach primarily addresses medical re-
eral parameters in a suspicious region is essential. For the diagnosigasirchers seeking for a better understanding of which perfusion pa-
ischemic stroke, e.g., if the blood flow is delayed in a particular regiof@meters are crucial for specific diagnostic tasks and how imaging pa-
itis crucial to evaluate if the overall blood flow is also reducgg][ ~ rameters influence the expressiveness of perfusion parameters. This
To streamline the integrated analysis of perfusion parameters, {@gearch is motivated by contradictory recommendations in medical
present a visual analysis approach incorporating pre-processing &¢farch papers, e.d2] and 30| for CHD diagnosis. _
statistical methods as well as feature specification steps. Motion cor-This paper is structured as follows: In S@cwe give an overview
rection and noise reduction are fundamental pre-processing issue8fiighe medical background in perfusion diagnosis and on correlation

achieve a reliable correspondence of voxels over time. Since the d@nalysis and PCA. In SeB, we describe our analysis approach. The
application of the approach to clinical perfusion datasets from breast

tumor diagnosis, ischemic stroke diagnosis, and CHD diagnosis, is
e Steffen Oeltze and Bernhard Preim are with the Department of Simulatigiiscussed in Se@. Prior and related work on the application of In-
and Graphics’ Universi[y of Magdeburg’ Magdeburg’ Germany’ E-mail: fOViS teChniqueS for the ana|ySiS Of multl'fleld da.ta. as We” as on the
{stoeltz¢preim} @isg.cs.uni-magdeburg.de. visual analysis of perfusion data are presented in/Siethe last sec-
o Helmut Doleisch and Philipp Muigg are with the VRVis Research Centerfion will summarize and conclude the paper.
Vienna, Austria, E-mail{DoleiscHMuigg} @VRVis.at.
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Bergen, Bergen, Norway, E-mail: Helwig.Hauser@uib.no. This section gives a brief overview on the medical background in per-
fusion diagnosis and further acquaints the reader with the basics of
correlation analysis and PCA.




IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. Y, SEPTEMBER/OCTOBER 2007

Intensity

2.1 Perfusion Diagnosis A
Slope

In perfusion imaging, a CA is injected intravenously and its distribu- DownSlope, 7
tion is measured by a repeated acquisition of subsequent images cov- 7

ering the volume of interest. The CA provides signal changes in the

acquired 4D-data (3Btime). In case of a perfusion defect, the corre-
sponding region exhibits an abnormal change in signal intensities. The ChAarrival  # Integral
spatial resolution and quality of perfusion data are worse than those of

static data. High temporal resolution can only be achieved at the ex-

pense of lower spatial resolution and image quality. ‘
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Particularly CT, PET, SPECT and MRI data are employed for perfu- Base,.., TP Timey, Time
sion imaging. In the following, we only consider MR perfusion since MTT

MRI is the most widespread perfusion imaging technique for breast
tumor diagnosis, it outperforms CT in stroke diagnosis since the efig. 1. A typical time-intensity curve in myocardial perfusion with a sig-
tire brain can be scanned (instead of a single slice with CT) and it haificant first pass and an alleviated second pass of contrast agent traver-
shown to have at least a similar sensitivity and specificity in compagal annotated with the essential parameters to evaluate the first pass.
ison to PET and SPECT in CHD diagnosis. T1-weighted MR imagémilar curves are observed in cerebral perfusion.
are typically used for breast tumor diagnosis, whereas T2-weighted
MR images are employed for the diagnosis of ischemic stroke. In
T1-weighted imaging, a signal enhancement is achieved in areas ofThe parameters are derived per voxel and stored in sepzaes-
contrast agent accumulation. On the other hand, T2-weighted imagésr volumeg3D). As a major pre-processing step, noise reduction is
lead to a decrease of signal intensity where the CA accumulates. often solved by conventional noise reduction filters, such as Gaussian.
Perfusion Parameters. For the diagnosis, regions of interest inLysaker et al.[24] introduced a filter for 4D data that better preserves
healthy and suspicious tissue are defined, and time-intensity curvefeatures based on partial differential equations, which simulate a dif-
averaged over all voxels in the selected region — are analyzed. Désion process. Motion-correction is the second major pre-processing
pending on the application area, different sets of parameters, derivask, carried out to establish a valid inter-pixel correspondence. Mo-
from the curves, are relevant. However, some parameters are of géon correction is essential when breathing, heartbeat, patient move-
eral interest for almost all application areas (see [Ejg.Before we ment, or muscle relaxation occurs. The motion correction algorithm
describe these parameters, we introduce three parameters neceskasgioped by Rueckert et al. is widely us&d|[
for a reliable evaluation. ) o )
The CA arrival represents the point in time when the signal en2-2 Correlation and Principal Component Analysis
hancement actually starts, wher€tisne=nq refers to the end of the Correlation analysis reveals whether variables vary independently of
first CA passage. ThBaselinerepresents the average intensity beforeach other or are (inversely) proportional. The amount of correlation is
CA arrival (see Figll). These parameters are determined to focus thepresented by the so-calledrrelation coefficientr{). In the follow-
evaluation of the time-intensity curve to the relevant portion. ing, we assume a matriX™" representing variables (perfusion pa-
Assessing perfusion considering the ac@alarrival, Timezpgand  rameters) andh observations (voxels of thgarameter volumés The
the Baselineis essential to compare perfusion analysis results froBymmetric matrixR™" of correlation coefficients is then computed
different scanning devices and patients. Major diagnostically relevasdised on the covariance matéof A. A value offrij = —lindicates a
perfusion parameters are: perfect inversely proportional relationship, whereas a valug o 1
. corresponds to a perfect proportional relationship. A valugjof 0
e Peak Enhancement (PEJhe maximum value (betwedDA ar-  rg|ates to non-correlated variables. BesiBesn equally-sized sym-
rival andTime:,q) normalized by subtracting thgaseline The  metric matrixP of p-values is computed for testing the hypothesis of
PE separates the time interval betwe@A arrival andTime:=na o correlation. If a particular p-value is 0.05, the correlation is con-
into a phase of CAvash-infollowed by the CAwash-out sidered significant. Mller et al. P6] suggest that the user may exclude
) . . variables from a PCA that strongly correlate with each other. Other-
¢ T'm.e To Peak (TTP)The point of ime Wh'erePE OCCUIS, N0 ise these variables might mislga):jingly strengthen certain trends.
malized by subtractin@A arrival time. This parameter a_IIows The PCA is a technique from multivariate statistics to detect vari-
to assess whether the blood supply is delayed in a particular Yles from multi-dimensional data that may be redundant. For the pur-
gion. pose of dimension reduction, these variables may be grouped together
o form a new variable. Furthermore, PCA explains the structure of

® ::rlléeg:aéazgroe; cbtlagg’:::;nﬂtcm;e tlt?ée;\ﬁg(%fé?vr\llggﬁrfhs; gﬂrr]\?eogr?dciﬁ ationships between variables and thus provides additional insight

Baseline— the approximated integral — is computed. Togethew. 0 the data. The PCA results in new variables, the so-cqifed
PE andIntegral may give a hint on reduced blood flow. up_al_componentsEach prln(:lpa_l componenp¢) represents a single
axis in a new orthogonal coordinate spape-épacg— generated by

e Mean Transit Time (MTT)n the time interval used for the inte- & Variance maximum rotation of the original data space. The first pc
gral calculationMT T specifies the first momentum of the curve (PCL) explains most of the variance in the original data, the second one
Itis normalized by subtractinGA arrival time. (pc2) most of the remaining variance, and so on. _

Before applying a PCA, it is often reasonable to standardize the

e TheSlopecharacterizes the steepness of the curve during wagtata. This is necessary, when the variables were not measured in the
in. Depending on the temporal resolution, different regressidi@me units or when their variance is substantial. For standardization,
methods are used to characterize the curve progression. The téggentered around its mean and then each coluniisdlivided by its
Up-Slopein cardiac diagnosis relates to the maximum slope b&tandard deviation. This step is often referred tdato-scaling One
tween two or three subsequent time-steps betw@ararrival way to compute the pc's is to applySingular Value Decomposition
and TTP. In tumor perfusion studies, the related parametdSVD) As a result, the SVD returns matricB€S™", score§™" and
MITR (Maximum intensity to Time Ratio) is determined; it is& vector containing the eigenvalu#$<" of C. Each column oPCS
computed a®E/TTPand it is thus an average slope in the inconsists ofn loadingsrepresenting the weights for the linear combi-
terval betweerCA arrival andTTP. nation of then original variables. Thecoresare the coordinates of the

original data transformed intpc— space The vectoA represents the

e The DownSlopecharacterizes the steepness of the descendimgriances explained by threpc’s.

curve during wash-out and is computed similar to $epe According to Miller et al. B€], the PCA results may be exploited
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in several ways, e.g., to detect prominent trends in the data. Thesd-or some applications, such as ischemic stroke or CHD diagnosis, it
trends are represented by the pc's. Téedingsindicate how individ-  is useful to restrict the computation of perfusion parameters to relevant
ual variables correlate with these trends. The eigenvalu€swdy be structures (brain tissue or ventricles of the heart). A variety of seg-
applied to neglect less significant trends during the analysis (low vahentation algorithms has been integrated intovMdeah e.g., a fast

ues correspond to a low variance explained by the corresponding pejtershed algorithm for brain segmentatidd][ Once the relevant

A major problem involved in interpreting PCA results is the difficultystructures have been segmented, the perfusion parameters are derive
to relate trends to the original variablézg]. Therefore, Miller et al.  voxel-wise for these regions and exported separatghaesmeter vol-

[26] suggest to oppose treeoresand the original variables in a scat-umes Theparameter volumeserve as input for the feature specifica-
terplot. Another approach they recommend is to preseré¢beesin  tion as well as for the statistical component. The segmentation part
their spatial frame of reference (the original perfusion data). Furthenay be skipped if the entire dataset must be analyzed.

more, linking & brushing should be applied to relate seeresto the

original variables. 3.2 Statistical Analysis
At the beginning of the statistical analysis, the user is presented a list
3 A PERFUSION DATA ANALYSIS APPROACH containing the perfusion parameters which have been approved in his

This section describes the visual analysis approach independent §f &€r diagnostic field of interest (see S8d-4.3). The user may re-
specific application area. However, the included figures have bei¢ this initial set resulting in a new s¢B} of k parameters. In a
generated based on cerebral perfusion data to illustrate the apprda@¥ Step, the background voxels within therameter volumesorre-
by means of a real-world example (see $&t). spondmg to{ R} are identified to restrict further computations to the
The approach consists of three major components (se€2Fig anatomic structures. Based on the h!stog_rgm ofone_of;bwmnete_r
pre-processing component, a component for statistical analysis é/,ﬁ)épmesthe background voxels are identified (the highest peak in the
a component for interactive feature specification in multi-field datgiStogram) and excluded from further analysia¢kground removal
For this paper, these components have each been implementea_hﬁ decision may be refined by defining a threshold. The indices of
MeVisLal¥, a platform for medical image processing and visualiz4!'€ rémainingn voxelsV OXejey are stored in a vectdDrejey. Then,
tion, MATLAE? and the frameworiSimViS3, the perfusion parameter mat¥™ X is constructed considering only
the voxels referred to biDejey. As discussed in Sel.2, the PCA
may require a standardization of its input to deliver meaningful results.
Since the perfusion parameters have not been measured in the same
units,Auto-scalings applied toA. The result of this step is referred to

Pre-processing Feature specification as nj[lék_
Noise reduction and \ ﬁxrﬁgoims To evaluate the relationship between several parameters, a correla-
motion-correction \ tion analysis is carried out resulting in matride@ndP. In order to
H —{ Segmentation of :elevant structures Object+Time space consider Onl.y Slgnmcant COI’relatiOI’BjS ex.amined for Vall,!e.g 0.05.
Export The correlation coefficients iR corresponding to the remaining values
Paramete:demaﬁun 1| Solames are set td (no correlation). A visual representation®how enables
(Analysis of ime-intensily curves) | the user to identify parameters that are highly correlated (se8)-ig.

! scatterplot matrix is generated by plotting all columng\igy against

| parameter volumes ) ! .
Stanoalanal)os each other. The diagonal of the scatterplot matrix shows the histogram

nvestation of each parameter. The background color of each plot has been chosen
Selection of parameters according to the respective valueRn A color scale has been designed
approved in the resp. diagn. field . . oy ..
S that visually separates negative and positive coefficients. Furthermore,
‘ 5 ‘ it emphasizes correlation coefficients—0.9 or > 0.9. When drag-
ackground removal . . . . .
; Feature ging the mouse over the plots, the respective correlation coefficient is

displayed. Zooming in and out enables the user to further explore sep-
arate plots. The visualization &in Fig.'3 shows the following strong
correlations:Integral — PE, PE «— MIiTR, PE < Slope Slope~
MIiTR and Slope— DownSlopg(inversely proportional). Since pa-
: rameterdPE andSlopestrongly correlate with three other parameters,
‘ o ool ‘ respectively, they may be excluded from further processing. This re-
3 sults in the MatrixAT!, wherel is the number of remaining parame-

Export scores

«{ Auto-scaling of parameters ‘

Correlation analysis

coefficients

Multivariate analysis

‘ Principal Component Analysis l oy ters. ) . ) .
1 scores In a next step, a PCA is carried out basedAgg;, resulting in the
i Classification } Export classes matricesPC3*!, score§™! and a vectod 1! (recall Sec2.2). To de-

tect trends in the pc's, tHeadingsin PCSare visualized in a vertical
bar chart (see Fi (left)). However, the PCA does not only reveal
Fig. 2. A perfusion data analysis approach consisting of three compo-  the trends but it orders them by their significance — expressed by the
nents: pre-processing, statistical analysis and interactive feature speci-  variances imA. To incorporate this significance in the visualization,
fication. the loadingsin columni,i € [1,1] of PCSare weighted with (1,i)
according tol2€] (see Figdl (right)). The plot in Fig4 (right) reveals
a major trend represented tpcl. This trend is determined by the
3.1 Pre-processing parametersntegral, DownSlopeandMiT R. The positivd oadingsof
The original 4D-perfusion data serves as input for the pre-processifijedralandMiT Rindicate a direct proportional relationship, whereas
component. Here, the data is noise reduced applying a Gaussian kelfef1€gativéoadingof DownSlopendicates an inversely proportional
and motion-corrected according &1 (see Sec2.1). Next, the sepa- relationship. A second and a third trend are respectively observed in

rate time-points (3D-data) are exported and may serve, e.g., as confii& andpc3. To relate the trends to the original perfusion parameters,
information during the visual analysis. the scoresare exported for later processing within the feature specifi-

cation component.
IProduct of the MeVis Researalwww.mevislab.de The end of the statistical analysis constitutes a classification step.
2Product of the MathWorks, Incwww.mathworks.com This step has not yet been implemented and will therefore not be dis-
3Developed by the VRVis, Viennayww.simvis.alt cussed in the paper. However, related work indicates that in particular,
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Fig. 3. Scatterplot matrix of perfusion parameters. The background
color of each plot is chosen according to the respective correlation co-
efficient. The color scale is designed such that coefficients < —0.9 or
> 0.9 are emphasized. The diagonal of the matrix shows a histogram
for each parameter.
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Fig. 4. Principal components and their loadingsfor each of the rele-
vant parameters (left). To incorporate the significance of each trend, the
loadingsare weighted with the variance explained by the corresponding
pc (right).

techniques to classify Dynamic Contrast-Enhanced MRI Mammogrg
phy (DCE-MRIM) data are promising in detecting suspicious regio
(see Sech). Hence, the statistical analysis incorporates a classifi
tion of the (pre-processed) perfusion data — possibly restricted to r
evant structures—, of the standardized perfusion parameters and of
scores The detected classes are exported and may be processed wi

the feature specification component.

3.3 Feature Specification

ple). The result of such a brushing operation is reintegrated within the
data in the form of a synthetic data attrib@®I; [0, 1] (degree of
interest (DOI) attributionof the data, compare to Furnag?]). This

DOl attribution is used in the 3D views of the analysis setup to visu-
ally discriminate the interactively specified features from the rest of
the data in a focus+context visualization style which is consistent in
all (linked) views [L5].

In the SimVis systenmsmooth brushind11] (enabling fractional
DOl-values) as well as the logical combination of brushes for the spec-
ification of complex featureflQ] are supported. A smooth brush re-
sults in a trapezoidal DOI function around the main region of interest
in the attribute views. To enable the integration of a fully flexible de-
rived data concept, a data calculator module with a respective graphi-
cal user interface has been added. New attributes can be derived from
existing ones and thereafter are available for full investigation in all
linked views.

There are several different purposes of the interactive feature spec-
ification process and the resulting exploration and analysis steps, of
which the most important are:

e Feature localization to search for places in the 3D domain of
the data where certain feature characteristics are present. In
the SimVis approach, the user can brush features in attribute
views and concurrently localize the respective feature in the 4D
(3D+time) volume domain.

e Multi-variate analysis to investigate multi-variate data proper-
ties by specifying a feature in one attribute view and at the same
time analyzing the DOI distribution with respect to other data
attributes in other attribute views (through view linking).

e Local investigation to inspect the values of selected data at-
tributes with respect to certain spatiotemporal subsets of the 3D
volume domain. In the SimVis system, the user can also load
spatial as well as temporal data references into attribute views —
brushing these kinds of data attributes then yields features which
are specified according to their spatiotemporal extents.

4  APPLICATION

The perfusion data analysis approach introduced in [Séms been
applied to 5 datasets so far (1 from ischemic stroke diagnosis, 2 from
breast tumor diagnosis and 2 from CHD diagnosis). These datasets
are representative for the respective diagnostic field concerning spa-
al and temporal resolution. Due to space restrictions, not all analysis
sults can be discussed here. Therefore, the reader is referred to the

ins additional analysis results, high-resolution versions of allimages
éuded in this paper and a video to illustrate the interactive aspect of
analysis.
re-processing. All datasets have been noise-reduced applying a
Gaussian kernel. To reduce motion artifacts, the datasets from breast
tumor and CHD diagnosis have been motion-corrected according to
[31]. To restrict the motion-correction on the myocardium in CHD di-

Cé_llowing website:wwwisg.cs.uni-magdeburg.de/cv/VAoRP Y con-

The interactive feature specification of data coming from the preagnosis, the datasets have been cropped before. In the dataset from is-

processing as well as from the statistical analysis stage of our amemic stroke diagnosis, the brain tissue has been segmented by means

proach is carried out in a framework employing the SimVis technobf a watershed-algorithrii#] to restrict the parameter derivation to in-

ogy [11][10]. SimVis was previously developed for the analysis of 3Deresting regions. Since the T2-weighted datasets from cerebral perfu-

time-dependent flow simulation data, but has recently been extendiuh lead to a decrease of signal intensity where the CA accumulates,

to also cope with multiple other data types, e.g., measured 3D weatttes time-intensity curves appear mirrored onBaselinewith respect

radar data. Here, we extended the technology further to also work withFig./1. To achieve a consistent way of analyzing datasets from dif-

time-dependent multi-field data from medical applications. ferent application areas throughout the paper, the intensity-values were
In SimVis, multiple linked views are used to concurrently show, exaverted. In the datasets from CHD diagnosis, the myocardium has

plore and analyze different aspects of multi-field data. 3D views of theen semi-automatically segmented in each slice by means of a live-

volume (also over time) can be used next to several types of attribmtige technique32]. The resulting contours have been propagated over

views, e.g., scatterplots or histograms. Interactive feature specifiedi-time-points. The final parameter derivation has been restricted to

tion is usually performed in these attribute views. The user choodfie segmentation results.

to visually represent selected data attributes in such a view, thereb . . i

gaining insight into the selected relations within the data. Then, tHet !Schemic Stroke Diagnosis

interesting subsets of the data are interactively brushed directly on thecase of an ischemic stroke, the existence and the extent of “tissue

screen (compare to the XmdvTo@4] and see Fig5(b) for an exam- at risk” surrounding the core of the stroke has to be evaluated. Sur-
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Fig. 5. Visual analysis in ischemic stroke diagnosis. In (b), parameters T TP (x-axis) and Integral (y-axis) have been opposed. High TTP- and low
Integral-values (delayed and diminished perfusion) have been brushed in the scatterplot. As a result, the infarction core is revealed in (a) applying
T T Pfor color-coding. Smooth brushing along both axis of the plot (d) gives a hint on the location of “tissue at risk” (greenish area in (c)). Here, the
perfusion is delayed as well however, enough blood arrives over time. In (e), the brain is rotated to gain a better impression of the over-all extension
of the infarction in 3D. Furthermore, the shape of the brain is indicated by a smooth brushing (f) applied on the gradient magnitude computed from
a single time-point of the perfusion data. Interestingly, a smooth brushing (h) in a scatterplot opposing the scoresfor pcl (x-axis) and pc2 (y-axis)
yields a very similar result (g) compared to (c).

gical and medicamentous interventions may salvage at least parts oTwo interesting trends are revealed pg3 and pc4 which conflict

the “tissue at risk”9]. In cerebral perfusion, thiirst-passof the CA  with pc2 and pcl, respectively (see Fi@gl). The first two pc’s again
(see Fig/l) through the vessel components is observed. The volurdescribe parameter relationships which are to be expected in cerebral
of blood in each voxel is diagnostically relevant. It is measured kperfusion, whereagc3 andpc4 characterize atypical behavior. Hence,
the Integral of the enhancement curve. Other approved parameteheir correspondingcoreshave been analyzed within the feature spec-
describing the cerebral blood flow d@P&, TTP, MTTandSlope[21]]. ification component. The results are illustrated on the website.

Case Study.The patient whose dataset will be analyzed here, suf- Visual analysis. A crucial task in stroke diagnosis is to localize
fered from an infarction in the right hemisphere (which will appeathe infarction core and especially the surrounding “tissue at risk”. The
left in all subsequent images). The dataset matrid#8x 128, slice first three columns in FicE illustrate how visual analysis may guide
distance: 7 mm, number of slices: 12, temporal resolution: 40 meis process. In a scatterpldk,T P (x-axis) andintegral (y-axis) are
surements in 80 seconds. opposed and a region is brushed that indicates delayed and diminished

Statistical analysis. The results of the statistical analysis are illusperfusion (Figl5 (b)). As a result of thigeature localizationthe in-
trated in Figi344. First, the initially suggested set of approved parantfarction core appears as a bright region (Ega)). HighT T P-values
eters has been refined by addidgwnSlopeandMiTR. The exami- are mapped to colors from yellow to red. Smooth brushing in both
nation of the correlation coefficients of the refined set revealed thrdnensions now gives a hint on the existence of “tissue at risk” @-ig.
types of strong correlations (recall S8c2): correlations between pa- (d)). A near-focus region is defined (blue arrows point at its borders)
rameters describing the amount of blood that arrives at a certain regtbat incorporates areas where the perfusion is delayed as well, how-
(Integral — PE), between parameters describing the velocity of thever, enough blood arrives over time. Candidate areas for “tissue at
enhancemenSlope— MITR, Slope— DownSlopgand in between risk” appear greenish (mediufT P-values) in Fig/5 (c). This ob-
these two typesRE < MiTR, PE < Slopg. The correlation between servation could be successfully validated witt®]l where the same
SlopeandDownSlopsés inversely proportional. Since tii#gownSlope dataset has been examined. In Ede), the brain has been rotated to
is measured in negative values, this indicates that a fast wash-in (higgdin a better impression of the over-all extension of the infarction in
Slopevalues) is likely to be followed by a fast wash-out (high nega3D. Furthermore, the shape of the brain is indicated as context infor-
tive DownSlopevalues). Since the parametdt& andSlopestrongly mation. Latter has been achieved by a smooth brushing of the gradient
correlate with three other parameters, respectively, they have beenmagnitude computed based on the intensity values from a single time-
cluded from further processing. point of the original perfusion data (Fi8.(f)). The focus has been

The PCA showed four major trendpdl-pc4) which account for defined such that a smooth brushing assigns small DOI values to the
52%+29%+ 11%-+ 7% = 99%o0f the variance in the data. A problemmajority of gradient magnitudes resulting in just a slight indication of
when interpreting PCA results is to assign a meaning to the newtlye anatomical context. This technique will be used throughout the
generated coordinate axes. This has an impact, e.g., on brushing ingaper. In Fig5 (h), pcl (x-axis) andpc2 (y-axis) have been opposed.
newly generated coordinate space. According tiallét et al. 6], As discussed above, abstract axes labels could be “Amount and Veloc-
we label the axes with respect to the parameters that determine itgg and “Time to Enhancement”. Hence, small values on the x-axis
trend in the respective pc. More abstract labels could be “Amount aadd high values on the y-axis are brushed. The near-focus region is
Velocity” for pcl and “Time to Enhancement” fquc2. selected accordingly (blue arrows). A comparison of Bdg) and
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Fig. 6. Visual analysis in breast tumor diagnosis. Selection of high intensity differences between original time-points t; and ty (b) emphasizes areas
were the CA is absorbed (a). Two suspicious regions are detected (arrows). The analysis is focused on a local region LR around Sarge (C) by
means of brushing small Euclidian distances between its center and the surrounding tissue (d). Areas exhibiting a rapid wash-out are selected in a
histogram depicting DownSlop€f). A negative brush is used to exclude positive and small negative values. The corresponding areas are visualized
in (e) and color-coded according to Slope Yellow to red areas indicate a rapid wash-in and wash-out. A smooth brushing of Slopewithin LR (h)
reveals subtle jags along the border of Sarge (g) Which are typical for malignant structures.

Fig. 5 (c) shows that the revealed areas match closely. Hence, thehe data. Further details on the interpretation of the pc’s is available
trends expressed bycl and pc2 together describe CA enhancemenbn the website. In the following, the focus is on a streamlined local-

patterns that are typical in cerebral perfusion. ization and separation of suspicious structures for local investigation.
. . Visual analysis. Subtraction images emphasize regions where the
4.2 Breast Tumor Diagnosis CA is absorbed (see Sé&). Hence, additional parameters have been

The major diagnostic task in breast tumor diagnosis is to confirm or réerived based on the original time-points in the perfusion data. Each
ject the hypothesis of a tumor being malignant. Evaluating the shapedg@fameter describes the intensity difference between two subsequent
the time-intensity curves has been proven to be effective in the difféime-pointst; andt;, wherej > i. In Fig.[6 (b), high differences in in-
entiation of enhancing lesiori3]. Parameters that describe the shaptensity between time-points andtp have been selecte@¢lection).
areMTT, MiTR, PE, Slope, DownSlope, T&RdIntegral. Curves — The corresponding areas are emphasized in6-{@). The structure
which show a rapid wash-in followed by a rapid wash-out, i.e., a si§targe Which has already been detected in conventional mammogra-
nificant decrease of signal intensity afterwards — are especially sudpiiy, is pointed at by the lower arrow. Furthermore, a smaller structure
cious because they indicate strong perfusion and high permeabilitySsfnall is revealed close to the thoracic wall (upper arrow). Besides
vessels. Less suspicious are those curves showing a plateau lateflife areas, major vessels and the acromastium are emphasized. To
or those regions which continue to enhance. focus the analysis on an area arouglge for local investigation

Case Study. The described dataset was acquired to examine?'&e Euclidean distance between it_s center and the surroun_dir_lg tissue
suspicious region in the right mamma that has been detected dudfgomputed. Then, a range of distance valugslgctiod,) within
conventional mammography. The dataset matrixds8x 204, slice Selectiod is brushed (Fig6 (d)) such that the local regidrR around
distance: 3 mm, number of slices: 26, temporal resolution: 6 megarge includesSsmai (Fig.6(c)). In (Fig.6(f)), Selection; (red bars)
surements in 10 minutes. In breast tissue, contrast enhancement [gsyésualized within a histogram of paramef@ownSlopefor multi-
considerably longer than in cerebral blood vessels. Therefore, Ion%]éf'ate analysis High negative values indicating a rapid wash-out of
acquisition times are employed. The reduced temporal resolution B1€ CA are typical for malignant tumors. Hence, this range has been
lows a significant increase in spatial resolution. Due to space restif€lected withirSelectior; by excluding positive and small negative
tions, the analysis results of a second DCE-MRIM dataset will only p@lues with the help of a negative brush (the blue line marks the verti-
presented on our websif@@wisg.cs.uni-magdeburg.de/cv/VAopD/ Cal zero-axis). The resultis color-coded by means of pararfsbgre

Statistical analysis.In addition to the initially suggested set of ap-" Fig:6 (€). Sarge andSsmai both exhibit a rapid wash-in and wash-
proved parameters two extra parameters have been added descriifigtnd are thus likely to be malignartm, partially shows small
the steepness of the curve during wash-in and wash-out. Each of thetfgPevalues which should be further investigated. Another indication
was computed between two particular time-points selected by the ud@ft confirms the suspicion of malignancy is illustrated in Bdg-
The examination of the correlation coefficients revealed a strong c&y: A smooth brushing of high and mediutopevalues withinLR
relation betweerntegral and PE as well as betweeRE andSlope Shows subtle jags (so-callegikulag along the border o§arge-
SincePE strongly correlates with two other parameters, it has been The observations in this section could be validated by means of a
excluded from further processing. The PCA showed four major trendsport from an experienced radiologist who supposed3hat) forms
expressed bpcl-pc4. All together account forr 91%of the variance  a satellite lesion connected §yge by one of the spikulae.
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Fig. 7. Visual analysis in CHD diagnosis of datasets Heart; (a-d) and Heart, (a, e-h). (a): Plot representing pcl and pc2 of datasets Heart; (top)
and Heart, (bottom). Brushing the scores of pcl (b) reveals the infarcted region (green area in (c)). The right ventricle (left arrow) and the lumen
(right arrow) are presented as context information. The selection from (b) is transferred to a scatterplot (d) opposing T TP (x-axis) and Up-Slope
(y-axis). TTPis not a reliable parameter to detect the infarcted tissue in this case since the selection is spread over the entire codomain (red dots).
However, this may not be valid for another dataset as illustrated in (e-f) for Heart,. A selection of high TTP-values and small Up-Slope-values (f)
reveals the infarcted tissue (green area in (€)). Brushing of pc2 (h) which represents an atypical enhancement pattern exhibits areas where the
segmentation of the myocardium failed (g).

4.3 CHD Diagnosis variance in the data. For the sake of brevity, only the first two pc’s
are examined here (Fi@. (a, lower plot)). A typical enhancement

In CHD diagnosis, the detection and localization of a perfusion defi ttern is represented Ing1. However,pc2 shows an atypical pattern.

ment decisions. Major iagnostic taske t e performed ar to sall /A" PCL Of Heart, TTPis proportion tategral andUp-Siope
whether the pa.tient suffers from CHD, to evaluate the severity of tﬁl thermoreMiT R s inversely proportional tJp-Slopethough both
disease and to assess the vascular su' v of | fused ti ﬁ%rameters describe the steepness of the curve during wash-in.
pply of less perfused tissue. Atan
early stage, CHD is characterized by a perfusion defect caused by &/isual analysis. To examine the atypical enhancement pattern rep-
stenosis (an abnormal vessel narrowing). The localization of the pegsented bypcl of Heart;, the scores opcl have been brushed in a
fusion defect with respect to the myocardium combined with anatorhistogram (Fig.7 (b)). A selection of high values reveals the infarcted
ical knowledge about the supplying coronary arteries is essentialtiasue (green region in Fig.(c)) within the ring-shaped myocardium.
detecting stenosis as well as in early CHD diagnd2g}. [For CHD Color mapping has been applied to encode WpeSlope Since the
diagnosis, the parametep-Slope, PE, TTRndIntegral have been circular shape of the myocardium hampers the orientation, context in-
approved(2],[30], and 29]. formation has been added. Two arrows point at the right ventricle (left
Case Study. The two patients, whose datasets will be analyze@rrow) and the lumen of the left ventricle (right arrow). Only now,
in this subsection, both suffered from a heart attack. The matrix @hatomical knowledge about the correspondence between myocardial
dataseHeart; is: 144x 192, slice distance: 18 mm, number of slicesfegions and supplying coronary arteries may be exploited. The selec-
4, temporal resolution: 40 measurements in 2seconds. The matrixien from Fig.[7 (b) has been transferred fowlti-variate analysigo a
dataseHeart, is: 144x 192, slice distance: 18 mm, number of slices:scatterplot opposing T P (x-axis) andUp-Slope(y-axis) (red dots in
3, temporal resolution: 40 measurements in 2 seconds. Fig.[7 (d)). Interestingly, the infarcted tissue is spread over all time-
Statistical analysis.In a first stepMiT R has been added to the ini- POINts. Probing the time-intensity curves within the infarcted region
tially suggested set of approved parameters. The examination of &@wed that the acquisition time of the scan was too short to deter-
correlation coefficients foreart; andHeart, revealed a strong cor- Mine a reliableTTP. In the infarcted region, no CA arrived at all
relation betweerntegral andPE. Since the variance of tHategral- ~ Over time. However, E and therefore a TPP always exist no matter

values had been higher than the variance ofREevalues, in both if the time-intensity curve represents CA enhancement or only noise.
casesPE was excluded from the subsequent PCA. After all, it seems that in spite of the unreliabld P-values a brush-

The PCA ofHear; showed two major trends expressedgzgt and ing of pcl still delivers meaningful results. This might be due to the

pc2, respectively (Fig7 (a, upper plot)). Both pc’s together explain!oW l0ading of TTP (Fig.7I(a, upper plot)). However, the higbad-

~ 91%of the variance in the data. Howevexcl describes an atypi- N9 ©f the unreliablel T P-values inpc2 prevents meaningful brushing
cal enhancement pattern. In damaged tissue, the blood flow is delaf&dH!ts there.

(high TT P-values) and diminished (e.g. lolategral-values). How- One major difficulty in analyzing perfusion data is that a parameter
ever, pcl indicates a proportional relationship. This will be furthetthat has been evaluated as unreliable in one case may turn out to be re-
examined in the visual analysis stage (see below). liable in another case and vice versa. As illustrated inFig, lower

The PCA ofHeart, showed three major trends expressedpoy plot and e-f),T TP might be a reliable parameter fteature localiza-
to pc3. All together account fob51%+ 25%+ 17% = 93% of the tion in Heart,. Brushing of highT T P-values (x-axis) and smallp-
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Slopevalues (y-axis) reveals the infarcted region (green). Hpod, high dimensional data was presented [Bg|[ Their application pro-
describes a typical enhancement pattern. In contpa&tdescribes an file flagsmay be used to integrate time-intensity curves immediately
atypical patternT T Pandintegral are proportional, andp-Slopeand in a visualization, thus supporting the mental integration of the curve
MiTR are inversely proportional related. Brushing of extreme valugsmrameters and the display of the original perfusion data. Fina#y, [

of pc2 (red bars in Fig7 (h)) reveals areas at the transition betweedescribe highly interactive 3D visualizations of DCE-MRIM data in a
myocardium and lumen and myocardium and pericardium (arrowsvirtual reality environment.

Fig.[7/(g)). Further examination of these areas showed that the propa-Analysis of Perfusion Data.Another venue of analyzing perfusion
gation of the segmented myocardial contours over time did not matdhta relates to a statistical analysis as well as mining and knowledge
the myocardium at all time-points (recall S&}. A prerequisite for discovery techniques. In particular, the classification of DCE-MRIM
a correct matching is a working motion-correction which failed padata by means of artificial neural networks and clustering techniques

tially. is an active research are23[ 6, 33]. As an example, Twellmann et
al. [33] applied an artificial neural network (ANN) architecture which
5 PRIOR AND RELATED WORK combines unsupervised and supervised techniques for voxel-by-voxel

InfoVis techniques for the analysis of multi-field data as well as on tf}@- Chen et al. ] investigated and developed a fuzzy c-means
visual analysis of perfusion data. CM) clustering-based technique for automatically identifying char-

Visual Exploration of Multi-field Data. Our visualization con- acteristic kinetic curves from segmented breast lesions in DCE-MRIM
: . : a. Nattkemper and Wissmuell&7] described the application of
cepts extend ideas from general systems for analyzing and explors organized maps to time curve features of DCE-MRIM data and

multidimensional image data such 4}.[Due to the absence of stan-~: d how th It be visuall ted | ded
dardized intensity values and the high variability of image scanne(?§cusse ow the results may be visually represented as color-code

and patient data, the analysis of perfusion is a typical exploratory angli(_)S_S-S(_i‘CthﬂS. Automatic CIaSS|f|(_:a_t|on may be useful In a screening
ysis task where visual data mining techniques are esseb8jal [ setting in order to replace the opinion of a second radiologist or to
Closely related concepts were presented by Gresh and Rogowitfjﬂaect a radiologist to suspicious regions.
the WEAVE system13]. In particular, we employ their concept of 6 SUMMARY AND CONCLUSION
tightly integrating a 3D-visualization with multiple statistical repre- . . . ) L
sentations, connected by brushing facilities applied to scatterplot réf§e presented the integration of pre-processing techniques, statistical
resentations. Similar to their exploratory scenarios, we also attemp#§thods and interactive feature specification for the analysis of the
quickly compare and correlate variables. Inspired by their approadulti-dimensional space of perfusion parameters, derived from medi-
Doleisch et al. developed the SimVis framework for interactive fe£2l perfusion data. The visual analysis strategy presented here allows
ture specification for CFD data in previous woKI[[10]. In [5], the to assess the_ reliability of spc_ecn‘lc pe(fusmn parameters, the correla-
concepts of Gresh and Rogowitz have been optimized for interactii@n of perfusion parameters in a particular case and thus enables an
work with very large medical multi-field datasets and extended by ti@sficient evaluation focused on a significant subset of perfusion param-
integration of analysis techniques from pattern classification. Hengters. Compared to the prevailing purely visually and highly subjective
[17] analyzed time-varying CFD data by multiple linked views. How£Vvaluation methods, our approach enables a more reproducible evalu-
ever, instead of analyzing the time-dependent data directly, we e@tion supported by quantitative analysis results. Our research con-
ploy the perfusion parameters derived from them. Among the typicéibutes to answering questions with respect to the diagnostic value of
exploration techniques, linking and brushing is of crucial importanc@.certain combination of perfusion parameters. Such questions are de-
Brushing refers to the graphical selection of data subsets which &ted in the medical research literature and they are difficult to treat,

emphasized and operated in various ways. The first comprehengiice the choice of specific imaging parameters strongly influences the
realization of this concept was presentecdh [ diagnostic results. Thus, our visual analysis approach may be used to

Visual Exploration of Perfusion Data. Basic visualization tech- investigate the effects of a new contrast agent, a new scheme of con-

niques for exploring perfusion data were described4jy(focus on trast agent administration or changes in other imaging parameters on
tumor perfusion) and20] (focus on cerebral perfusion). The cine-the diagnostic value of perfusion parameter combinations.
matic depiction of gray scale images in a movie loop gives an impres- The most important work to be done relates to a thorough evalua-
sion of the enhancement pattef].[ Subtraction imageslepict the tion of the presented analysis strategy for a larger number of specific
intensity difference between two selected points in time, thus, emptf@ses in cerebral, tumor, and myocardial perfusion. Within such an
sizing regions where the CA is absorbed. However, they do not p,%vglgatlon, the perfusion data analy5|s apd clinical parameters charac-
vide quantitative temporal and spatial information, which could maKgrizing the progress of the respective disease have to be integrated to
the diagnostic results more reproducible. Color-coded parameter mg&er understand the diagnostic value of perfusion parameters. Based
[20] revea| the regiona| distribution Of Se|ected perfusion parameteﬁg] SUCh.an eVaIUat|0n, dedlcated software SyStemS f0r routine Cllnlcal
However, the analysis of parameter combinations in a tiled visualiZéi2gnosis may be developed. Such systems must be fine-tuned to par-
tion requires a menta| integration Of Suspicious regions_ t|CUI§|’ appllcatlons an(_j Should h|de most Of the _analytlcal processes
Multiparameter visualizations, integrating several perfusion parar@Pd instead present primarily the results of analytic processes together
eters in one image, were introduced i8] and [2§]. Different kinds With a set of standardized visualizations. _ _
of multivariate color scales, color icons and colored height fields are With respect to the analysis strategy, the incorporation of clustering
discussed. Flexible lenses were also used to integrate the visualf£ghniques which classify regions according to the similarity of time-
tion of a foreground parameter (in the lens region) with a backgroufifensity curves, deserves a systematic investigation. Based on recent
parameter. In particular for DCE-MRIM with its high spatial resoProgress, €.g., in kidney perfusion studies, such a classification may
lution, direct volume rendering techniques have been explored. Siongly enhance the user’s task of selecting regions of interest.
color-coded Closest Vessel Projection especially suitable for explor-
ing DCE-MRIM data was presented ifig. Coto et al. B] employ ACKNOWLEDGEMENTS
Two-level volume rendering and importance driven volume renderinle thank F. Grothues, A. Fessel (Medical Faculty, University of
to focus volume rendered images to previously segmented breastM&gdeburg), J. Wiener (Boca Raton Comm. Hosp., Florida), M.
sions. This work is the closest to our work since also linking anélenchel, S. Miller and A. Seeger (Max Planck MR-Center, Univer-
brushing was employed to select regions of interest. However, thelyy Tubingen) for providing the image data our work is based on.
did not consider the perfusion parameters, described in8dctin-  We are grateful to MeVis Research for providing advanced/isleab
stead, they considered only the intensity and the enhancement ifeatures. This work has been partly funded by the "Bridge” funding
subtraction image. Also, their approach is dedicated to DCE-MRIgrogram of the Austrian Funding Agency (FFG) in the scope of the
data. A rather general technique to support the visual exploration &vere Weather Explorer project (Nr. 812122).

This section describes prior and related work on the application}gssmcation of temporal kinetic signals derived from DCE-MRIM
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