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Abstract

In many fields of research as well as in many application$éemiftial information plays
an important role. Often, the differential information @mdnvestigation results from the
measurement, simulation, or modeling of a real-world plnegrmon. As such, differen-
tial information may be given in the form of a (usually larget of vectorial samples or
analytically, e.g., in the form of differential equations.

There are different options of how to deal with differentigbrmation, and visualiza-
tion, especially interactive visualization, is one verteiesting of them. The visual system
of human beings offers a broad-band access to the human mihdisualization exploits
this opportunity to enable insight into often large and ctarplatasets.

Below, a review of visualization approaches to the depictiod analysis of differential
information is presented with a special focus on the relatedk which has been done in
Vienna, Austria, during the past decade. Questions of hodepict differential informa-
tion, of how to do selective visualization, of how to enabi&eractive visual analysis of
differential information, and of how to integrate compigagl approaches within the visu-
alization are addressed, especially also in the contexataf @hich is given in more than
two dimensions.

1 Introduction

Science and applications are continually engaged in thestigation of real-world phenomena.
On the one hand, scientists develop mathematical modelsabfworld phenomena such as
equations to represent gravitational forces at astron@eades or models of electron density
around atoms and molecules. On the other hand, measureameht®mputational simulations
are used to depict phenomena of the real world in form of edait data. Models as well as
datasets exist in different forms — in this paper we will camtcate on differential information,
i.e., information which represents phenomena of changehdoaterize most generally.

Together with the development of new models as well as inurartion with the acquisition
of datasets through measurements or simulations, thesestegion and analysis of the result-
ing information is of great importance. There are differar@ans of how to investigate such
models or datasets, including approaches which are moftgtiaah(e.g., mathematical, statis-
tical, and other computational approaches) and such whae mely on a more direct form of
representation. Visualization has become quite populanasery effective opportunity for the
investigation of models or datasets. Below, we will revieWwalvvisualization can do when it
comes to representing and/or analyzing differential imi@tion. To do so, we will discuss these
opportunities as ranging from pure representational nastho such which are more based on
analytical procedures.
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Figure 1: Cycles of (counterclockwise) system evolution in the Letkdterra predator-prey model
(left [31]) and the evolution of prey over time for one pamir starting scenario (right [31]).

2 Differential I nformation

In the context of this review, we will use the temtifferential informationfor any model or
data which stands for something varying. Often, this vayyisomething” will be some sort
of physical matter in spatial dimensions, e.g., gaseougjoidl fluid which moves over time.
However, to some extent this “varying something” can als@lset of system states, e.g., the
population sizes of different species in a joint predat@ygenvironment.

In the context of our review, we will further assume that thviarying something” does ex-
tend over multiple dimensions. Most visualization apphascas addressed further below pro-
vide opportuntities for the representation or analysisvaftor three-dimensional models/data —
this is due to the natual mapping of models/data to the 2D ovi8Qalization space. However,
there are also visualization approaches which address#iesge of how to represent/analyze
models/data in higher dimensions [64, etc.].

To provide a more formal basis for our review, we introduce ftllowing notation to rep-
resent the differential information under investigation:

v=dp/dt PEQCR, veR" teR Q)

According to this definitiony can be interpreted as (differential) information about smme
n-dimensionalp moves or changes over tinte In the context of this review, we will assume
thatv is either given as an analytic mode(p, t), e.g., as a set of differential equations, or
as a discrete set of-dimensional vectorial samplegp;, ¢;] such as a vector field which is
associated with a certain grid structure. In these (quiteegd) considerations; is assumed to
be also dependent on timhe- in many cases, however,is assumed to be steady with respect to
time, resulting in the simpler scenariosw(fp) or v[p;].

With respect to visualization, there are some importarfedifices according the whether
an analytic model or a discrete dataset is given — howevilr,nsiny of the below out-
lined approaches can be used to deal with either form of rsonletata. In fact, there are
many cases where a dataset which is given in discrete forotafvéeld v[p;]) actually rep-
resents a continuous phenomenon, e.g., some continuodsfliui. In these cases, appro-
priate interpolation or approximation schemes can be usegtdonstruct an analytic data
model v(p,t) from the set of samples, e.g., through the use of a lineametaation fil-

terh [42]: v(p,t) = X2 h(p — pi) v[pPi]-
A simple example for an analytic model is the predator-prey model of Lotka and
Volterra [43] in which the temporal evolution of two poputats (prey and predators) in a joint



environment is modeled differentially:

_ _ x (x| rx—Dpry
V(p)—dp/dt—d<y>/dt—(Q)—<emy_my> )

In this steady modeh( is not dependent on time), the population amounts vestar [0, co)?
and its differential changes € R? are two-dimensional entities with andy representing
the amount of prey and predators in the system, respectiaalyr, p, andm being system
parameters which are assumed constant for one particgt@nination of this model. For any
particular configuratiorp of the system (a particular amount of preyand predatorg), the
above equation yields the differential system chawngeith respect to time at this particular
configuration. Figure 1 shows a selected set of temporaltwak in the Lotka-Volterra model
(cyclic evolutions in ther-y-plane on the left, and the evolution of preyover timet on the
right). The cyclic behavior of temporal evolutions in thiodel stems from the fact thatis
modeled to be (largely) positive wheris (very) small and negative whetis comparably large,
whereagj is modeled to be large whenis large and small when is small.

Starting from a particular configuratigs, of the system at a particular point in timg the
temporal evolution of the system can be calculated by iateyy equation 2 over time. Thereby,
a parameterized path (or trajectory or pathline or p(9) is calculated:

p(s) = po+ [ 80 v(p(7) to+7) d7  0<sER @)

Integration curvep(s) represent the evolution of such a system over time. Accghgimany
visualization techniques build upon this concept to regmeslifferential information. Unfor-
tunately, it usually is impossible to solve equation 3 atiedyly. Alternatively, numerical in-
tegration schemes are required to approximate the sofufi¢s). In visualization, often rela-
tively simple integration procedures are used. In addittothe most simple Euler intergration
scheme pp(t+At) = p(t)+ At v(p(t)) —, which only is useful when very small time stefss
are utilized, more advanced integration schemes such &%her 4"-order Runge-Kutta inte-
gration [40, 42] are commonly used.

An example for a discrete form of differential informatienis the result from a numerical
CFD (computational fluid dynamics) simulation (or a subbketre¢of) which is vectorial infor-
mation given on a certain grid, i.e., a vector field. Figureh@ves (parts of) a computational
grid (in this case just a 2D longitudinal cross-section tigito a scene with a car, composed of
several curvilinear blocks) in the upper image — near to #rebody the flow domain is finely
resolved whereas farther away larger grid cells are used-aaimple visualization of the vec-
tor field v[p;] as resulting from the CFD simulation in the lower image — tirewas represent
the flow direction at the cell centers, color has been used to represent pressure in this flow.

In general, the kind of grids used for the simulation and ihe kf result which is delivered
can be different. Especially with respect to the grids erygdip a large variety of options exist,
ranging from simple Cartesian grids to any other forms diagbnal grids, to curvilinear grids,
to unstructured grids, to block-strucutured grids, et@, BB]. In addition to cell-centered vector
fields (as demonstrated in figure 2), also vertex-centeretbrvéelds are quite common. Several
issues arise in visualization in dependance of whetherrieeod other kind of grid is used and
which kind of results file is delivered, including the challe of efficient point locationin
large grids, propeflow reconstructionand thecomputation of derived datsuch as local flow
attributes which depend on the local derivathgr atp [40, 52].



Figure 2:A 2D grid composed of curvilinear blocks (only a small pamwsh) for a CFD simulation of
air flow around a car body (upper image) and a simple arrowsdbsisualization of the resulting vector
field (below).Data courtesy by AVL List GmbH, Graz, Austria

3 Flow Visualization

Visualization (as considered in this review) is the utiliaa of computer graphics for the pur-
pose of enabling insight into extensive and/or complex anof information. Depending
on the task of the user, different kinds of visualizationveréo be effective when it comes to
quickly getting an overview of some large set of informatiarhen it comes to interactively
drilling down into interesting subsets of information, wihié comes to generating hypotheses
about the information, or when it comes to interactivelyifyarg or falsifying these hypotheses.
Visualization is an interesting opportunity for the inigation of models/data, because through
visualization the extremely efficieny human visual systemexploited to enable a broad-band
interface between models/data and the human mind.

In the field visualization research, different subfields bamlistinguished, includingolume
visualization which usually is concerned with the visual representatiod analysis of volu-
metric information such as CT-scans of patients or the fikey visualization which addresses
the class of differential information (as in the focus ofthéview), andnformation visualiza-
tion, which encompasses the (usually) interactive visual amalyf abstract information, e.g.,
databases, census data, etc. In the following, we conterdrathe field of flow visualization
and try to review previous work in a structured way. More eghes, more references, and more
in-depth information about the various approaches can bedfdn a more extensive review
published elsewhere [40].

3.1 Direct Flow Visualization

It is by far not obvious how the field of flow visualization wduhave to be substructured. The
large set of available approaches and techniques can lsfieldsaccording to a number of
different dimensions, including classifications (a) adaog to the dimensionality of the flow
domain (2D, 3D, or different), (b) according to the origintbé differential information (mod-
eling, measurements, or simulation), or (c) according ¢cattmount of computation involved in
the visualization (direct vs. integration-based vs. cotational methods). In this review we will
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utilize the last option (classification according to thestdince” between the original information
to be visualized and the eventual visualization resultsfoomulating a bit different, according
to how much processing is required to transform the origilaéh into the visualization).

We start with visualization techniques (here caliig@ct flow visualizatiohwhich represent
a fairly straight-forward mapping of differential infortian into graphical representations. This
class of flow visualization techniques includes (relayiv&mple) approaches such as mapping
vectorial information to a set of arrow glyphs (as also destiated in figure 2, lower image),
or using color-coding to represent values of change in esdafad6, 40].

In 2D, just a few interesting questions arise with these «iofl approaches. For color
coding, for example, the question of an appropriate colop alevays is of great importance.
In a good solution, for example, perceptual color diffeeare matched with differences in
the original data — a simple, linear interpolation throulge RGB color cube, as often seen in
poorly designed visualization systems, does not provigeféiature [45, 29, 44]! Also, and due
to the fact that visualization designers often tend to ma&enthe information throughput in
their visualization solutions, the question of how mucloiniation actually should be encoded
within color is to be treated. It is possible to map one, twogeen more data dimensions
to different aspects of color such as hue and lightness, ¥ample. However, great care is
demanded to not overload the visualization — usually it tsuseful at all to code more than two
dimensions in color [2, 3]!

When using arrow glyphs for the visual representation dedihtial information, at least
two choices have to be made (apart from the choice of an apatemlyph in terms of shape
and color). First, the question of where to instantiate tieva glyphs has to be answered. In
some applications, it might seem appropriate to place amwaglyph in each and every location
where a flow vector is given (case of discrete data) — themieygolation is avoided and the data
is represented as it is originally given. However, diffimdtcan arise if the spatial distribution
of vectors is very uneven — in such a case it is likely that gseiting arrow glyphs overlap and
thereby visual clutter is caused (cf. figure 2, lower imadef.course, it is usually possible to
resample the vector field onto a regular grid, e.g., a Cameshe, and to map the resampled
vectors to arrow glyphs instead of the original ones — thetetally less clutter is generated but
details might be lost or artificially generated through thsampling process. A second option
along with this approach is to scale the arrow glyphs acaogrtt the length of the flow vector,
or not. Scaling glyphs will result in visualization whiclatrsports more information but which
usually is difficult to adjust, especially when flow veloegivary drastically. Normalized arrows
are easier to control (with respect to visual clutter) atabst of communicating flow directions
only.

In 3D, a number of further issues arise. Obviously, cololimgdonverts into a significantly
more advanced discipline, since in 3D the additional stepotifme rendering is required to
actually achieve visualization results [7, 11, etc.]. Utfoately, up to now most of volume
rendering research has been focussed on medical apptieatiad the related specifics of vol-
umetric data. Volume rendering of color coded flow data, h@reproves to be difficult and
often not fully satisfactory. In figure 3, on the left side, example for a volume rendering
of flow data is given [65]. An interesting alternative to wole rendering in 3D is the use of
auxiliary 2D geometries, e.g., a stack of planar patcheshvare parallel to each other, and to
color code these auxiliary geometries instead of the emtiieme. This technique is especially
useful when combined with so-called “scalar clipping” whiteans that for a certain subset of
flow values, no color is drawn, but full transparency is assdiimstead. Thereby, the issue of
visual clutter can be controled in a reasonable way andsggifificant insights in the flow data
are possible (see figure 3, right, for an example [50]).



Figure 3: Volume rendering of color-coded flow data (left, image cesytby R. Westermann [65])
and slice-based color coding of flow data with scalar cligpapplied (right, image courtesy by
M. Schulz [50]).

When using arrows in 3D, the issue of placement becomes egemimportant as compared to
the 2D case. Usually, it is no good idea to densly fill the 3D dimmwith arrow glyphs, signifi-
cant visual clutter is very probable and problems with thegation of the visualization arise.
Amongst the more popular placement strategies are pladeralemg auxiliary geometries, e.g.,
arrows which originate from a (relatively small) set of @amatches that are parallel to each
other, or the use of clustering ahead to the visualizatiotetive a significantly smaller set of
vectorial cluster representatives which then are mappadow glyphs [56].

3.2 Texture-based Flow Visualization

In direct flow visualization, as briefly discussed above, reaimapping of differential data
to visualization (either color or glyphs) is employed. I&thser is interested in the temporal
evolution of the data or model, then he or she is required tataflg integrate the visual repre-
sentation, e.g., to mentally follow arrows or a color gratii@sually difficult and not really sat-
isfactory). In texture-based flow visualization, i.e., e thext class of visualization techniques
to be discussed in this review, visualization attempts teatlly encode the temporal evolution
as induced by the differential information, at least in teiwhrelatively short evolution pathlets.

In texture-based flow visualization, texture maps (wichssgjuently are used to color-code
auxiliary geometries in the flow domain through texture magpare computed which fulfill
the condition that the texture values, i.e., the color valurethe texture map, are correlated
along the flow whereas they exhibit high frequencies acrosdlow. Fulfilling this property,
these kinds of texture maps convey the visual impressiondafrse set of particles which all
have been smeared out a bit into the flow direction. In figuiefdimage, an example is shown
for a texture-based flow visualization on a slice throughlendgr of a gas engine in a passenger
car [28] —itis clearly visible from the texture map in whickaythe flow goes as well as where
the flow is fast and where not.

The two by now classic algorithms to compute such texturediae integral convolution
(LIC [6, 53]) and spot noise [62], together with a large numbikeextensions which have been
published lateron [26, 40]. The basic approach to computl€aedxture is easily explained: As-
sume you have a scalar texture mafx) : R" — [0, 1] available —n encoding light intensi-
ties within the texture — which does not exhibit any coriiels&d amongst its values with re-
spect to whatsoever spatial directions, e.g., a white rneidere. Assume further that you also
have numerical flow integration available such that you aanpute a (usually short) stream-



Figure 4:Example for a texture-based flow visualization (left imagre a slice through a cylinder of a

gas engine [28]), an LIC texture for the Lotka-Volterra mio@eiddle image [31], cf. equation 2), and a
still image from Lagrangian-Eulerian advection (right meaimage courtesy of Br. Jobard [22]).

line p(s) for each and every point in your destination texturéic(x) : R" — [0,1]. For
a particular locationx in the LIC texture,p(0) may equalx and s may range from—s,,q,
t0 Simae. With any kind of smoothing filteth(s) : [—Smazs Smaz] — [0,1], €.9., @ trun-
cated or windowed Gaussian or a simple box filter, the LICulextic(x) can be computed
by lic(x) = [?m  n(p(r))h(—7) dT.

The original algorithm for computing LIC [6] did not take flowelocities into account when
integrating the short streamlgi$s) — accordingly, only flow directions were encoded in original
LIC images (cf. figure 4, middle image). Newer algorithmshsas Lagrangian-Eulerian texture
advection [22] or image space based advection of textug<gh incorporate a notion of flow
velocities on demand. They are efficient variants of LIC apdt3Noise which also work for
time-dependent data. See figure 4, right image, for a staigenfrom an animation which has
been produced with Lagrangian-Eulerian advection [22]r &more thorough discussion for
texture-based flow visualization, see our other review {24,

3.3 Integration-based Flow Visualization

Even though texture-based flow visualization techniquesliysare computationally quite ex-
pensive, they conceptually are still quite related to divésualization techniques, only with the
difference that a better indication for the flow evolutiorgigen. In the next class of flow visu-
alization techniques, we make another step away from di@gtvisualization in terms of how
much computation is necessary ahead to the visualizatiggpimg. The visualization proce-
dure now changes to first extracting intermediate geonsetinugh the use of numerical flow
integration and to visually represent these derived gedengttuctures instead of the original
data. The left image in figure 1, for example, is composed ¢ imtegral curves which have
been computed by numerical integration of the Lotka-Vedtenodel (equation 2), starting from
initial configurations(i, 1)” with i € {1,2,...,9}. The integral curves have been represented
as polylines in this simple visualization.

In general, there are several more opportunities of how poéxflow integration for indi-
rect, integration-based flow visualization. First, andeesgly in the context of time-dependent
data, i.e., in the cases ofp, t) or v[p;, ¢;], there are different options of which curves actually
to compute [57, etc.]: streamlines, pathlinesp, streakline, or timelinest. To properly re-
late them to each other we will use the following more genéedinition of an integral curve,
given for times, associated with a seed timig and a seed locatiopg, and parameterized in



t € [0, tmaz)):

c(po, to, s,t) = Po +/ c(po, to, s, 7), u(to,s,7)) dr 4)

Integration time parameterizes curwg starting from: = 0. Functionu(t, s, 7) determines the
time step from which the flow vectaris taken during integration in curve poirtépy, to, s, 7).

e Pathlines p(po, to, s,t) for time steps, seeded in locatiop, at seed timeg,, and pa-
rameterized int € [0,s—tg], are a very intuitive visualization methodology for the in-
vestigation of unsteady flow fields. They are defined as thle phitassless particles
whose movements are solely governed by the differentiarinition under investiga-
tion. Pathlinesp(po, to, s,t) equal the definition o&(py, to, s, t) from equation 4 with
u(to, s, 7) = to+7.

e Streaklines k(py, to, s, t) for time steps, seeded fronp, since timety, and parameter-
ized int € [0, s—to], are also very popular for the investigation of unsteady fiata, es-
pecially due to their origin in traditional experimentahMi@isualization, where a continu-
ous injection of particles into a moving fluid generates saustreakline. Accordingly, and
making use of equation 4 again, a streakkte, o, s, t) can be written as(po, s, s, t)
with u(tg, s, 7) = s—t+7. Fort=0 streaklinek equalspy = c¢(po, s, s,0), for t =s—t,
streaklinek equalsc(po, to, s, 1), i.e., a pathlingp of temporal lengtht = s—t,, seeded
at timety in locationpyg.

e Timelinest(ty, s,t) for time s, seeded at timé&), and parameterized i are yet another
option of how to investigate steady as well as unsteady flaa. deimelines are defined
to be a parameterized set of points which have been intradunte the flow at timet
and then advected by the flow ferty time. Accordingly, a timeling at times can be
written asc(po(t), to, s, s) With u(tg, s, 7) = to+7.

e Streamlines m(py, s, t) for time steps, starting in seed locatiop, and parameterized
int € R, are a classic methodology for the investigation of steambor fieldsv with
v(p,t1) = v(p, t2) for any twot; andt,. They are defined as curves which are tangential
to the flow vectors/(m(py, s,t)) in each and every point of the curve. In unsteady flow
fields, streamlines do not take the changes of the vectordigddtime into account, i.e.,
they can be writte am(po, s,t) = c(po, s, s,t) from equation 4 withu(¢o, s, ) beings
(or anything else, e.gty or to+7 as above for pathlines). Streamlines illustrate the flow
characteristics of selected time step only.

In the case of steady flow fields, pathlines, streaklines,strehmlines coincide according to
p(pPo, to, s,t) = k(po,to,s,t) = m(po,s,t). Table 1 summarizes the differences between
pathlines, streaklines, timelines, and streamlines imsesf equation 4.

A second choice with respect to integration-based flow Visat#on — especially in the con-
text of 3D flow data — is from which kind of seed object the imggipn is started from. Most

pathlinep(po, o, s,t): c(po, to, s,1)
streaklinek(py, to, s, t): po, s—t, s, t)

)i o

)i e
timelinet(to, s, t):  c(po(t), to, s, s)
streamlinem(po, s,t):  c(po, s, s, t)

o

& u( )
& u( )
& u(to,s,7) =to+7
& u(tp,s,7)=s (or ...)

Table 1: Summary of how pathlines, streaklines, timeliags, streamlines can be compared to
each other in terms of equation 4.



Figure 5: llluminated streamlines illustrate the flow across a wingaofairplane (left image, image
courtesy by Zockler et al. from the ZIB in Berlin, Germany]g a streamsurface with streamarrows is
used to selectively depict the flow through a dynamical sygtéght image [35]).

classic, and conforming to the above discussion, diffemddkof integral curves (pathlines, etc.)
are commonly used. Sometimes, short variants of theserattegrves are used, i.e., pathlets,
streamlets, aso., especially when more of them are to bgratesl within a visualization [33].
If curves of this kind are used for flow visualization, therithrepresentation in the visualiza-
tion is an important question. In general, special pera@pmthallenges can be identified when
1D structures are used in 3D visualization (depth percepsicignificantly challenged for 1D
objects in 3D space). One opportunity in such a situatioo smploy special shading for the
line structures and to generate illuminated streamlinB8s48]. Figure 5, left image, shows an
example of how illuminated streamlines can illustrate tbe/fhcross a wing of an airplane [54].
Another option is to represent the 1D curves by 2D geometjeats, e.g., in the form of a
streamribbon or streampolygon [61].

In addition to integral curves as integrated from seed ppihis also possible to use integral
surfaces — so called streamsurfaces in steady flow fieldsehvelne integrated from seed curves
instead. Assume that the seed cupyét), parameterized in, is a dense and continuous set of
seed points in 3D. Then — conceptually — every single seett ptong this curve is integrated
over time through the steady flow fielgh(s,t) = po(t) + [°_, v(p(7,t)) dr. The resulting
two-parameter sgi(s, ¢) is then a streamsurface [19, 20]. Even though introducelaresrly
1990s, streamsurfaces have become more popular only Isec€his most probably is due to
the computational complexity of their calculation [49, 1Ztreamsurfaces are attractive for
flow visualization in 3D because they are conveniently peeck However, streamsurfaces can
also cause visual clutter if too much of a seed curve is u$éategration is continued for too
long, or if too much divergence is present in the flow. Optitmsleal with these challenges
are to either reduce the geometry load from the visualinatéog., by cutting out so-called
streamarrows [35], or by modulating the transparency oftream surface [12]. Figure 5, right
image, shows a streamsurface with streamarrows throughdyB8&mical system (a 3D model
of chemical reactions [35]).

Of course, it is also possible to take a two-parameter patcead set for flow integration:
p(s,t,u) = po(t,u) + [7_,v(p(7,t,u)) dr. The three-parameter sets, ¢, u) is then called a
flow volume and volume rendering is to be employed for visazion [37].

As last aspect of integration-based flow visualization, olhis discussed in this review,

we address the issue of seeding. In the case of integratisedbflow visualization, always a
selective visualization is generated — a comparably sreabfsselected integral objects is used



for visualization. The more selective this visualizatien é.g., just one streamsurface is used
for visualization, the more critical the question of seegdirecomes — where to actually start
the integral object. Several solutions have been publiéiwetthis challenge, e.g., approaches to
generate evenly-spaced streamlines [23, 60], or such velmahle interactive placement of seed
locations [4, 50].

3.4 Feature-based Flow Visualization

Up to now, we have discussed direct, texture-based, angratien-based visualization of dif-
ferential information. Still remaining in this review isdlvery large class of visualization tech-
nigues which build on a significant amount of processing dheahe actual visualization map-
ping. Due to the large number of already published appreaady a rough outline is provided
here and the reader is refered to a more extensive overvigghwiécently has been published
elsewhere [41, 40].

Obviously, there are many possible ways of preprocessiagléta before visualization is
applied. In this review, we will only focus on a subset of tielely common approaches.

Topology-based Flow Visualization

One important approach to analyzing differential inforimatis to first do some more mathe-
matical analysis on the data before visualization is usedalysis is done to identify subsets
of the flow domain which exhibit behavior that is similar imrtes of long-term evolution, e.g.,
all stream lines within such a region converge to a jointaator. It is noted that most of the
previous work on topology-based flow visualization has gatlion the case of steady data.
Only recently, approaches to the topology-based visuaizaf unsteady flows are being de-
veloped [59].

To extract the topology of a flow field or a dynamical systemstfthe critical points
are identified, i.e., all configurations* of the flow domain in which there is no flow, i.e.,
v(p*) = 0[17, 18]. Next, the flow is investigated in the local surroimgdof the critical points.
This is done through the approach of local linearizationiliziiig the Taylor expansion of
aroundp®, i.e.,

v(p*+Ap) = Yz (Ap-V)'V|pr = v(p*) + Ap- Vv p- + O(Ap)?,
neglecting the terms of second as well as higher or@é\p)?), and substituting/(p*) = 0
due to the main characteristic of critical points, we idgrttie Jacobian matriX’v |- of flow v
in critical pointp* as the locally dominating flow component. MatN&v induces linear flow
behavior around (non-degenerated) critical pojtsand its characteristics are described by
the eigenvalues and eigenvectors of this matrix. Neggksitive eigenvalues correspond to
attracting/repelling behavior along directions which gieen by the associated eigenvectors.
Eigenvalue pairs with a non-zero imaginary component spord to flow which rotates around
the critical point. Accordingly, critical points are cl#fésd into the non-degenerated cases of
nodes (either attractors or repellors), foci (rotatingyédr), and saddles. Once, the critical
points are identified and classified, it is often interestmgvestigate characteristic streamlines
as emanating fronp* into the direction of the eigenvectors ®fv |,-. Thereby, the relation
between critical points is investigated and so-called isgpees are computed (flow exhibits
significantly different long-term behavior on either sideacseparatrix, e.g., converging to dif-
ferent attractors). There are many examples in which theldgjcal skeleton of a flow field
was utilized for visualization [18, 32]. In figure 6, left ima, an example for a topology-based
visualization of a 3D dynamical system is shown.
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Figure 6: Topology-based visualization of a 3D dynamical systent @ife [32]). Visualization of a
periodic dynamical system in 3D based on a Poincaré mabt@ide [34])

In addition to critical points, also critical structureshigher order can be investigated. Most
important next to critical points are closed trajectories,, cycles. They are defined as all
points p** for which c(p**,s—1T,s,T7) = p** andT > 0 holds (using equation 4 again with
u(to, s,t) = s for steady flows). Typically, cycles are more difficult to ididy, but useful
algorithms have been proposed recently [67, 66, 58]. Ontectbal, also closed streamlines
can be classified similar to critical points. In generak-dimensional critical structure in an
n-dimensional flow § < n) can always exhibit attracting/repelling behavior as eisged with
selected directions. Saddle behavior as well as rotatihguer can only be found for critical
structures of dimensioh < n—2. An non-degenerated invariant torus, for example, in a 3D
vector field, only has codimension-k = 1 and thus may only be either attracting or repelling.

Cycles are not only more difficult to extract but also to vigein an abstracted form (as
compared to the topology-based visualization based doalnioints). One interesting approach
is to utilize Poincaré maps for this purpose. Poincarésaap ar(n—1)-dimensional abstraction
of nD flow near closed streamlines. A Poincaré nRys related to an(n — 1)-dimensional
Poincaré sectiofil in such a way that anp < II is related to & (p) € II if it is possible to
find aP(p) = c(p,s—17,s,T) for a minimalT" > 0 such thatP(p) € II. According to the
definition of closed streamlines (see above), popits € 11 are related to themselves through
P: P(p*™)=p** (pointsp** € II are critical points of maf?). This abstraction of flow nearby
closed streamlines can be used for visualization [34]. fei@ right image, shows an example
of a Poincaré map based visualization of a periodic dynalsigstem in 3D.

Feature Extraction for Flow Visualization

In addition to topology-based flow visualization, also floigualization which builds on the
extraction of other kinds of flow features such as vortice® (selow), shock waves [36, etc.],
attachment/detachment points [24, etc.], or recircutariones [14, etc.] are very popular. Es-
pecially in the domain of vortex extraction, a lot of reséahas been done [40, 41].

Different approaches have been proposed to detect thosetsudf a flow which are char-
acterized by a signififcant amount of local rotation. Onesstilof algorithms identifies vortical
regions, e.g., by searching for regions of high amounts @f ¥lorticity V x v [63], or by inves-
tigating helicity(V x v) - v, i.e., vorticity projected onto the flow [30]. Other algbits focus
on the identification of vortex core lines (instead of vatitegions). One approach is to follow
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Figure 7: The parallel vector technique [38] applied to flow throughrafitube in turbomachinery
design (left image, image courtesy by M. Roth et al., ETHi@iif46]); Sample result from a geometric
vortex extraction technique (rightimage, image courtgsy Badarjoen et al., Delft University [48]).

streamlines from critical points [13]. Another is to coraidtreamlines of the vorticity field [1],
also taking flow pressure into account (flow vortices are attarized by locally low pressure).
A very popular algorithm is to search for locations in whible worticity field is parallel to the
velocity field [47, 38, 46]. In figure 7, left side, the applice of the parallel vector technique is
illustrated in the context of flow through a draft tube in tomachinery design [38, 46]. Another
very popular algorithm is to search for locations in the flolene the gradient of the flovik{v)
exhibits two eigenvalues with non-zero imaginary compeésdre., rotating flow behavior, and
where the eigenvector which is associated with the realegkigenvalue is aligned with the
flow [55, 25].

In addition to algorithms which are based on the analysi®ddll flow characteristics, also
algorithms which utilize information from a larger neiglibood are very interesting. One
algorithm utilizes combinatorial topology (Sperma’s ttexn) for the detection of vortex core
lines [21]. Another paper introduces two geometric techegfor the detection of rotating
flow substructures [48]. A sample result from their applaais shown in figure 7, right side,
indicating vortices in ocean flow in the northern Atlantic.

I nteractive Feature-based Flow Visualization

Alternatively to approaches which aim at the as automatjgogsible extraction and visualiza-
tion of flow features, the approach of interactive featurteeextion and visualization (as recently
developed at the VRVis Research Center, www.SimVis.atoglwmentioning.

In this approach, the goal is (a) to put forth the rich varigtgontents in a large and multi-
dimensional flow simulation dataset by visualizing selécabsets of the data in an intuitive
way, (b) to provide a flexible set of interaction mechanisniéciv enables the user to conve-
niently formulate his or her interests in the data in the fafimplict feature characteristics
(example: slow but nevertheless hot flow which also is netivédoundary surface of a cooling
jacket), and (c) to concurrently provide a 3D focus+contéstialization of the simulation data
which relates the focus—context discrimination to theentruser interest. To realize this goal,
the following technological components have been develgpel integrated (more information
is provided by a related paper [16]):

e Selected visualization views such as histograms, schiteyand parallel coordinates, are
used to put whatsoever data attributes in a visual relatagath other. In figure 8, for
example, a CFD dataset is visualized by the means of a histofd), velocity values
alongz), a 2D scatterplot(b), velocities onz, turbulence values on), a 3D scatterplot
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Figure 8:A CFD dataset is visualized by the means of a histogram ofcitglealues (d), a scatterplot

“veloc

ities vs. turbolence values” (b), a 3D scatterplotlocities, turbolence, temperatures” (c), and

parallel coordinates (a).

((c), velocities, turbulence and temperature values), and &agblparallel coordinates

((a), eight different flow attributes shown). In the two scattetp and in the histogram

brushes are used to mark subsets of special interest. Iref&(@), one axis (showing
velocity values) is used to color the polylines — this easesetate data items across
multiple dimensions.

An approach calletinking & brushingin visualization [5, etc.] is used in SimVis to allow
for interactive visual analysis of high-dimensional ananpiex datasets [8]. Multiple
views are used to all jointly display one dataset under inyason. Brushing enables
the user to interactively mark certain subsets of the dateiwgy of special interest — the
user directly brushes the displayed data in one of the viewses off-screen sliders and
direct numerical input widgets to tell the system what hetar &urrently) focuses on.
Linking between views ensures that the entire visualimaigovisually consistent, i.e., in
all the views the same data subsets are consistently wiseratlanced (or deemphasized),
for example, by everywhere coloring the data in focus red.

In figure 9, three scatterplots and three histograms have b to specify the current
focus in the visualization of a simulation of hurricane Islafezloud structures and land).
The scatterplotéca), (cv), and(av), and the histograrth) are used to highlight all those
parts of the clouds in the hurricane which exhibit a signiftamount of wind speeftv),
which do not raise up too high into the atmosph@e and which either move noth or
south (two 3D brushes ina andav). The distinction between north and south winds
enables to detect an interesting flow behaviour in the noitthe hurricane. For the
purpose of additional orientation, a (dimmed) visual@atbdf the east cost of America
has been added through (partly) selecting the respectil@iogwo histograms{’ &
h”). The 3D view(3D) provides a spatial and also time-dependent 3D visualizgtiolor
visualizes wind directions, green: north, purple: south).
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Figure 9: The simulated hurricane Isabel is visualized. Through the of three scatterplots and a
histogram, relatively fast clouds are emphasized whichataase too high up into the atmosphere —
only winds which are (at least to some extent) aligned neathth are highlighted to reveal an interesting
flow structure in the north of the hurricane. Additionallyetland is shown for geographical reference.

e The interactive process of semantically annotating tha ¢tatough brushing) to differ-
entiate between more and less interesting parts of the datequently causes the views
to show a (so called) focus+context visualization of theadab, & refs. therein]. Data
subsets in focus are visually enhanced as compared to thatiext, i.e., the rest of the
data, which is just shown in reduced form, e.g., less opagdeat colored, to provide a
visual reference for the current focus and to ease orientatind navigation. In SimVis,
the approach of focus+context visualization also has beeméed to the more traditional
views, i.e., the 3D rendering of the data. Data in focus igally discriminated from the
context by selective coloring as well as by variations ofaiyaand style.

Figure 10, left side, demonstrates how focussing allowsveal interesting structures in

a 3D dataset. IfF+C) the interface between water and air has been selected in-a two
phase simulation of the flood after the breaking of a dam aneffect on an obstacle in
the flow (color: flow velocities). IHC) no feature has been selected wheredB)rall the
cells are shown in the same style — wherea&intoo little is shown, in(F) too much is
visualized.

In figure 10, right side, all those cells in a diesel partitifdter (DPF) for passenger cars
have been highlighted which are characterized by the pcesafriots of CO andCO5, and
which also exhibit relatively high temperatures (colorwbdlow velocities) — thereby
the front of an oxidation process is shown in the DPF whichsedufor the periodic
regeneration of the filter [10].

In figure 11, all those cells in 45° subset of the combustion chamber (in one cylinder
of a diesel engine) are highlighted (at four different tinbeps of the simulation) where
the combustion already is well progressed while still aificent amount of diesel is left
(an undesired situation) — color visualizes the amount pfrCthe cells. The respective
analysis [9] affirms that combustion stops too early bectuséttle oxygen is collocated
with the fuel mixture to be burnt in certain locations.

¢ In addition to the above mentioned points (visualizingiladtle space, establishing a link-
ing&brushing framework for interactive data analysis, arsihg focus+context visual-
ization to incorporate a notion of user interest), the ingoace of interaction should be
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Figure 10:Example for the visual discrimination of data subsets infoftom the respective context (left
side). The flood as resulting from a breaking dam is shownthagevith its effect on an obstacle. Only
through the (interactive) focussing on specific subseth@fiata (in this example the interface between
water and air in “F+C”), meaningful images can be produced.The front of an oxidation process in
a diesel particulate filter (DPF) is shown (right side [10}hich is used for the periodic regeneration of
the filter — all those cells are highlighted which exhibigaramounts of CO and GQwhile at the same
time being relatively hot. Color shows flow velocity.

emphasized. Ben Shneiderman’s visual information seekiagtra [51] well describes
the main character of working with SimVis: First, some sdrbeerview visualization
is needed — the user wants to get oriented, understand timefeaaiires of the data, etc.
Then, as soon as specific questions about the data arises¢hevants to perform an
information drill-down which allows to gradually refine aatere specification, before at
a certain point of the detailed analysis the user might warexport the results of the
analysis, for example, to compare a result with anotheryaisabf another dataset.

More information about SimVis and related technology caadmuired from the SimVis home
page (www.SimVis.at) or from related papers [8, 9, 10, 16.] et

4 Summary and Conclusions

In this paper, we have reviewed a subset of visualizatiomagmies to the challenge of how to
enable visual exploration, analysis, and presentatioriffdrential information. An overview
has been given of several useful directions, includingcatiiftow visualization (section 3.1),
texture-based flow visualization (section 3.2), integratbased flow visualization (section 3.3),
and feature-based flow visualization (section 3.4). It isttwvanentioning, however, that the
current state of the art still is much richer than outlinedhiis review — more approaches and
more references to related literature can be found in othere extensive reviews [40, etc.].

Concluding, it can be stated that flow visualization has lresearched extensively in the
past decades. There are solutions for a spectrum of applicatiestions. The large variety of
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Figure 11:Four time steps of a combustion process are shown [9], fowis® cells where the com-
bustion is well progressed but where still a significant amai diesel is left (undesired) — color shows
the amount of oxygen at this cells (in cells with too littleygen the combustion terminates too early).

reasonable solutions results from the fact that flow viga#ithn solutions always are dependent
on the user task at hand. Different techniques are to be osékd purpose of flow exploration
vs. flow presentation, for example. Also, different soloficapply dependent on whether 2D
or 3D flow is to be shown. Finally, even in cases where one flaualization methodology
applies to several different application cases, diffeesnmmight become evident with respect to
the implementation of the respective techniques. A flowaligation algorithm for analytically
specified dynamical systems, for example, can be significdifferent to the same algorithm
when applied to simulation data, given on an unstructur@ll his altogether might be respon-
sible for the fact that (by now) there isn't any all-in-one@prade visualization system which can
be used for whatsoever application. However, still manytsmhs exist already ready to use.
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