
Visual Analysis of Differential Information

Helwig Hauser,Hauser@VRVis.at

VRVis Research Center in Vienna, Austria,
http://www.VRVis.at/

Abstract

In many fields of research as well as in many applications, differential information plays
an important role. Often, the differential information under investigation results from the
measurement, simulation, or modeling of a real-world phenomenon. As such, differen-
tial information may be given in the form of a (usually large)set of vectorial samples or
analytically, e.g., in the form of differential equations.

There are different options of how to deal with differentialinformation, and visualiza-
tion, especially interactive visualization, is one very interesting of them. The visual system
of human beings offers a broad-band access to the human mind and visualization exploits
this opportunity to enable insight into often large and complex datasets.

Below, a review of visualization approaches to the depiction and analysis of differential
information is presented with a special focus on the relatedwork which has been done in
Vienna, Austria, during the past decade. Questions of how todepict differential informa-
tion, of how to do selective visualization, of how to enable interactive visual analysis of
differential information, and of how to integrate computational approaches within the visu-
alization are addressed, especially also in the context of data which is given in more than
two dimensions.

1 Introduction

Science and applications are continually engaged in the investigation of real-world phenomena.
On the one hand, scientists develop mathematical models of real-world phenomena such as
equations to represent gravitational forces at astronomicscales or models of electron density
around atoms and molecules. On the other hand, measurementsand computational simulations
are used to depict phenomena of the real world in form of electronic data. Models as well as
datasets exist in different forms – in this paper we will concentrate on differential information,
i.e., information which represents phenomena of change, tocharaterize most generally.

Together with the development of new models as well as in conjunction with the acquisition
of datasets through measurements or simulations, the representation and analysis of the result-
ing information is of great importance. There are differentmeans of how to investigate such
models or datasets, including approaches which are more analytical (e.g., mathematical, statis-
tical, and other computational approaches) and such which more rely on a more direct form of
representation. Visualization has become quite popular asone very effective opportunity for the
investigation of models or datasets. Below, we will review what visualization can do when it
comes to representing and/or analyzing differential information. To do so, we will discuss these
opportunities as ranging from pure representational methods to such which are more based on
analytical procedures.

1



            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2.5 5 7.5 10 12.5 15 17.5 20

5

10

15

20

25

Figure 1: Cycles of (counterclockwise) system evolution in the Lotka-Volterra predator-prey model
(left [31]) and the evolution of prey over time for one particular starting scenario (right [31]).

2 Differential Information

In the context of this review, we will use the termdifferential informationfor any model or
data which stands for something varying. Often, this varying “something” will be some sort
of physical matter in spatial dimensions, e.g., gaseous or liquid fluid which moves over time.
However, to some extent this “varying something” can also bea set of system states, e.g., the
population sizes of different species in a joint predator-prey environment.

In the context of our review, we will further assume that this“varying something” does ex-
tend over multiple dimensions. Most visualization approaches as addressed further below pro-
vide opportuntities for the representation or analysis of two- or three-dimensional models/data –
this is due to the natual mapping of models/data to the 2D or 3Dvisualization space. However,
there are also visualization approaches which address the challenge of how to represent/analyze
models/data in higher dimensions [64, etc.].

To provide a more formal basis for our review, we introduce the following notation to rep-
resent the differential information under investigation:

v = dp /d t p ∈ Ω ⊆ Rn, v ∈ Rn, t ∈ R (1)

According to this definition,v can be interpreted as (differential) information about howsome
n-dimensionalp moves or changes over timet. In the context of this review, we will assume
thatv is either given as an analytic modelv(p, t), e.g., as a set ofn differential equations, or
as a discrete set ofn-dimensional vectorial samplesv[pi, tj ] such as a vector field which is
associated with a certain grid structure. In these (quite general) considerations,v is assumed to
be also dependent on timet – in many cases, however,v is assumed to be steady with respect to
time, resulting in the simpler scenarios ofv(p) or v[pi].

With respect to visualization, there are some important differences according the whether
an analytic model or a discrete dataset is given – however, still many of the below out-
lined approaches can be used to deal with either form of models or data. In fact, there are
many cases where a dataset which is given in discrete form (vector field v[pi]) actually rep-
resents a continuous phenomenon, e.g., some continuous fluid flow. In these cases, appro-
priate interpolation or approximation schemes can be used to reconstruct an analytic data
model v(p, t) from the set of samples, e.g., through the use of a linear reconstruction fil-
terh [42]: v(p, t) =

∑

i h(p − pi)v[pi].

A simple example for an analytic modelv is the predator-prey model of Lotka and
Volterra [43] in which the temporal evolution of two populations (prey and predators) in a joint

2



environment is modeled differentially:

v(p) = dp /d t = d

(

x
y

)

/d t =

(

ẋ
ẏ

)

=

(

rx − pxy
epxy − my

)

(2)

In this steady model (v is not dependent on time), the population amounts vectorp ∈ [0,∞)2

and its differential changesv ∈ R2 are two-dimensional entities withx andy representing
the amount of prey and predators in the system, respectively, andr, p, andm being system
parameters which are assumed constant for one particular instantiation of this model. For any
particular configurationp of the system (a particular amount of preyx and predatorsy), the
above equation yields the differential system changev with respect to time at this particular
configuration. Figure 1 shows a selected set of temporal evolutions in the Lotka-Volterra model
(cyclic evolutions in thex-y-plane on the left, and the evolution of preyx over timet on the
right). The cyclic behavior of temporal evolutions in this model stems from the fact thatẋ is
modeled to be (largely) positive wheny is (very) small and negative wheny is comparably large,
whereasẏ is modeled to be large whenx is large and small whenx is small.

Starting from a particular configurationp0 of the system at a particular point in timet0, the
temporal evolution of the system can be calculated by integrating equation 2 over time. Thereby,
a parameterized path (or trajectory or pathline or . . . )p(s) is calculated:

p(s) = p0 +

∫ s

τ=0

v(p(τ), t0+τ) d τ 0 ≤ s ∈ R (3)

Integration curvesp(s) represent the evolution of such a system over time. Accordingly, many
visualization techniques build upon this concept to represent differential information. Unfor-
tunately, it usually is impossible to solve equation 3 analytically. Alternatively, numerical in-
tegration schemes are required to approximate the solutions p(s). In visualization, often rela-
tively simple integration procedures are used. In additionto the most simple Euler intergration
scheme –pE(t+∆t) = p(t)+∆tv(p(t)) –, which only is useful when very small time steps∆t
are utilized, more advanced integration schemes such as the2nd- or 4th-order Runge-Kutta inte-
gration [40, 42] are commonly used.

An example for a discrete form of differential informationv is the result from a numerical
CFD (computational fluid dynamics) simulation (or a subset thereof) which is vectorial infor-
mation given on a certain grid, i.e., a vector field. Figure 2 shows (parts of) a computational
grid (in this case just a 2D longitudinal cross-section through a scene with a car, composed of
several curvilinear blocks) in the upper image – near to the car body the flow domain is finely
resolved whereas farther away larger grid cells are used – and a simple visualization of the vec-
tor field v[pi] as resulting from the CFD simulation in the lower image – the arrows represent
the flow direction at the cell centerspi, color has been used to represent pressure in this flow.

In general, the kind of grids used for the simulation and the kind of result which is delivered
can be different. Especially with respect to the grids employed, a large variety of options exist,
ranging from simple Cartesian grids to any other forms of orthogonal grids, to curvilinear grids,
to unstructured grids, to block-strucutured grids, etc. [40, 39]. In addition to cell-centered vector
fields (as demonstrated in figure 2), also vertex-centered vector fields are quite common. Several
issues arise in visualization in dependance of whether the one of other kind of grid is used and
which kind of results file is delivered, including the challenge of efficient point locationin
large grids, properflow reconstruction, and thecomputation of derived datasuch as local flow
attributes which depend on the local derivation∇v atp [40, 52].

3



Figure 2:A 2D grid composed of curvilinear blocks (only a small part shown) for a CFD simulation of
air flow around a car body (upper image) and a simple arrows-based visualization of the resulting vector
field (below).Data courtesy by AVL List GmbH, Graz, Austria.

3 Flow Visualization

Visualization (as considered in this review) is the utilization of computer graphics for the pur-
pose of enabling insight into extensive and/or complex amounts of information. Depending
on the task of the user, different kinds of visualization prove to be effective when it comes to
quickly getting an overview of some large set of information, when it comes to interactively
drilling down into interesting subsets of information, when it comes to generating hypotheses
about the information, or when it comes to interactively verifying or falsifying these hypotheses.
Visualization is an interesting opportunity for the investigation of models/data, because through
visualization the extremely efficieny human visual system is exploited to enable a broad-band
interface between models/data and the human mind.

In the field visualization research, different subfields canbe distinguished, includingvolume
visualization, which usually is concerned with the visual representationand analysis of volu-
metric information such as CT-scans of patients or the like,flow visualization, which addresses
the class of differential information (as in the focus of this review), andinformation visualiza-
tion, which encompasses the (usually) interactive visual analysis of abstract information, e.g.,
databases, census data, etc. In the following, we concentrate on the field of flow visualization
and try to review previous work in a structured way. More examples, more references, and more
in-depth information about the various approaches can be found in a more extensive review
published elsewhere [40].

3.1 Direct Flow Visualization

It is by far not obvious how the field of flow visualization would have to be substructured. The
large set of available approaches and techniques can be classified according to a number of
different dimensions, including classifications (a) according to the dimensionality of the flow
domain (2D, 3D, or different), (b) according to the origin ofthe differential information (mod-
eling, measurements, or simulation), or (c) according to the amount of computation involved in
the visualization (direct vs. integration-based vs. computational methods). In this review we will

4



utilize the last option (classification according to the “distance” between the original information
to be visualized and the eventual visualization results; or, formulating a bit different, according
to how much processing is required to transform the originaldata into the visualization).

We start with visualization techniques (here calleddirect flow visualization) which represent
a fairly straight-forward mapping of differential information into graphical representations. This
class of flow visualization techniques includes (relatively simple) approaches such as mapping
vectorial information to a set of arrow glyphs (as also demonstrated in figure 2, lower image),
or using color-coding to represent values of change in a dataset [26, 40].

In 2D, just a few interesting questions arise with these kinds of approaches. For color
coding, for example, the question of an appropriate color map always is of great importance.
In a good solution, for example, perceptual color differences are matched with differences in
the original data – a simple, linear interpolation through the RGB color cube, as often seen in
poorly designed visualization systems, does not provide this feature [45, 29, 44]! Also, and due
to the fact that visualization designers often tend to maximize the information throughput in
their visualization solutions, the question of how much information actually should be encoded
within color is to be treated. It is possible to map one, two, or even more data dimensions
to different aspects of color such as hue and lightness, for example. However, great care is
demanded to not overload the visualization – usually it is not useful at all to code more than two
dimensions in color [2, 3]!

When using arrow glyphs for the visual representation of differential information, at least
two choices have to be made (apart from the choice of an appropriate glyph in terms of shape
and color). First, the question of where to instantiate the arrow glyphs has to be answered. In
some applications, it might seem appropriate to place an arrow glyph in each and every location
where a flow vector is given (case of discrete data) – thereby interpolation is avoided and the data
is represented as it is originally given. However, difficulties can arise if the spatial distribution
of vectors is very uneven – in such a case it is likely that the resulting arrow glyphs overlap and
thereby visual clutter is caused (cf. figure 2, lower image).Of course, it is usually possible to
resample the vector field onto a regular grid, e.g., a Cartesian one, and to map the resampled
vectors to arrow glyphs instead of the original ones – thereby usually less clutter is generated but
details might be lost or artificially generated through the resampling process. A second option
along with this approach is to scale the arrow glyphs according to the length of the flow vector,
or not. Scaling glyphs will result in visualization which transports more information but which
usually is difficult to adjust, especially when flow velocities vary drastically. Normalized arrows
are easier to control (with respect to visual clutter) at thecost of communicating flow directions
only.

In 3D, a number of further issues arise. Obviously, color coding converts into a significantly
more advanced discipline, since in 3D the additional step ofvolume rendering is required to
actually achieve visualization results [7, 11, etc.]. Unfortunately, up to now most of volume
rendering research has been focussed on medical applications and the related specifics of vol-
umetric data. Volume rendering of color coded flow data, however, proves to be difficult and
often not fully satisfactory. In figure 3, on the left side, anexample for a volume rendering
of flow data is given [65]. An interesting alternative to volume rendering in 3D is the use of
auxiliary 2D geometries, e.g., a stack of planar patches which are parallel to each other, and to
color code these auxiliary geometries instead of the entirevolume. This technique is especially
useful when combined with so-called “scalar clipping” which means that for a certain subset of
flow values, no color is drawn, but full transparency is assumed instead. Thereby, the issue of
visual clutter can be controled in a reasonable way and stillsignificant insights in the flow data
are possible (see figure 3, right, for an example [50]).

5



Figure 3: Volume rendering of color-coded flow data (left, image courtesy by R. Westermann [65])
and slice-based color coding of flow data with scalar clipping applied (right, image courtesy by
M. Schulz [50]).

When using arrows in 3D, the issue of placement becomes even more important as compared to
the 2D case. Usually, it is no good idea to densly fill the 3D domain with arrow glyphs, signifi-
cant visual clutter is very probable and problems with the perception of the visualization arise.
Amongst the more popular placement strategies are placements along auxiliary geometries, e.g.,
arrows which originate from a (relatively small) set of planar patches that are parallel to each
other, or the use of clustering ahead to the visualization toderive a significantly smaller set of
vectorial cluster representatives which then are mapped toarrow glyphs [56].

3.2 Texture-based Flow Visualization

In direct flow visualization, as briefly discussed above, a direct mapping of differential data
to visualization (either color or glyphs) is employed. If the user is interested in the temporal
evolution of the data or model, then he or she is required to mentally integrate the visual repre-
sentation, e.g., to mentally follow arrows or a color gradient (usually difficult and not really sat-
isfactory). In texture-based flow visualization, i.e., in the next class of visualization techniques
to be discussed in this review, visualization attempts to directly encode the temporal evolution
as induced by the differential information, at least in terms of relatively short evolution pathlets.

In texture-based flow visualization, texture maps (wich subsequently are used to color-code
auxiliary geometries in the flow domain through texture mapping) are computed which fulfill
the condition that the texture values, i.e., the color values in the texture map, are correlated
along the flow whereas they exhibit high frequencies across the flow. Fulfilling this property,
these kinds of texture maps convey the visual impression of adense set of particles which all
have been smeared out a bit into the flow direction. In figure 4,left image, an example is shown
for a texture-based flow visualization on a slice through a cylinder of a gas engine in a passenger
car [28] – it is clearly visible from the texture map in which way the flow goes as well as where
the flow is fast and where not.

The two by now classic algorithms to compute such textures are line integral convolution
(LIC [6, 53]) and spot noise [62], together with a large number of extensions which have been
published lateron [26, 40]. The basic approach to compute a LIC texture is easily explained: As-
sume you have a scalar texture mapn(x) : Rn → [0, 1] available –n encoding light intensi-
ties within the texture – which does not exhibit any correlations amongst its values with re-
spect to whatsoever spatial directions, e.g., a white noisetexture. Assume further that you also
have numerical flow integration available such that you can compute a (usually short) stream-

6



Figure 4:Example for a texture-based flow visualization (left image,on a slice through a cylinder of a
gas engine [28]), an LIC texture for the Lotka-Volterra model (middle image [31], cf. equation 2), and a
still image from Lagrangian-Eulerian advection (right image, image courtesy of Br. Jobard [22]).

line p(s) for each and every pointx in your destination texturelic(x) : Rn → [0, 1]. For
a particular locationx in the LIC texture,p(0) may equalx and s may range from−smax

to smax . With any kind of smoothing filterh(s) : [−smax , smax ] → [0, 1], e.g., a trun-
cated or windowed Gaussian or a simple box filter, the LIC texture lic(x) can be computed
by lic(x) =

∫ smax

τ=−smax

n(p(τ))h(−τ) d τ .

The original algorithm for computing LIC [6] did not take flowvelocities into account when
integrating the short streamletsp(s) – accordingly, only flow directions were encoded in original
LIC images (cf. figure 4, middle image). Newer algorithms such as Lagrangian-Eulerian texture
advection [22] or image space based advection of textures [27] can incorporate a notion of flow
velocities on demand. They are efficient variants of LIC and Spot Noise which also work for
time-dependent data. See figure 4, right image, for a still image from an animation which has
been produced with Lagrangian-Eulerian advection [22]. For a more thorough discussion for
texture-based flow visualization, see our other review [26,40].

3.3 Integration-based Flow Visualization

Even though texture-based flow visualization techniques usually are computationally quite ex-
pensive, they conceptually are still quite related to direct visualization techniques, only with the
difference that a better indication for the flow evolution isgiven. In the next class of flow visu-
alization techniques, we make another step away from directflow visualization in terms of how
much computation is necessary ahead to the visualization mapping. The visualization proce-
dure now changes to first extracting intermediate geometries through the use of numerical flow
integration and to visually represent these derived geometric structures instead of the original
data. The left image in figure 1, for example, is composed of nine integral curves which have
been computed by numerical integration of the Lotka-Volterra model (equation 2), starting from
initial configurations(i, 1)T with i ∈ {1, 2, . . . , 9}. The integral curves have been represented
as polylines in this simple visualization.

In general, there are several more opportunities of how to exploit flow integration for indi-
rect, integration-based flow visualization. First, and especially in the context of time-dependent
data, i.e., in the cases ofv(p, t) or v[pi, tj ], there are different options of which curves actually
to compute [57, etc.]: streamlinesm, pathlinesp, streaklinesk, or timelinest. To properly re-
late them to each other we will use the following more generaldefinition of an integral curvec,
given for times, associated with a seed timet0 and a seed locationp0, and parameterized in

7



t ∈ [0, tmax ]):

c(p0, t0, s, t) = p0 +

∫ t

τ=0

v(c(p0, t0, s, τ), u(t0, s, τ)) d τ (4)

Integration timet parameterizes curvec, starting fromt = 0. Functionu(t0, s, τ) determines the
time step from which the flow vectorv is taken during integration in curve pointsc(p0, t0, s, τ).

• Pathlines p(p0, t0, s, t) for time steps, seeded in locationp0 at seed timet0, and pa-
rameterized int ∈ [0, s− t0], are a very intuitive visualization methodology for the in-
vestigation of unsteady flow fields. They are defined as the path of massless particles
whose movements are solely governed by the differential information under investiga-
tion. Pathlinesp(p0, t0, s, t) equal the definition ofc(p0, t0, s, t) from equation 4 with
u(t0, s, τ) = t0+τ .

• Streaklines k(p0, t0, s, t) for time steps, seeded fromp0 since timet0, and parameter-
ized int ∈ [0, s−t0], are also very popular for the investigation of unsteady flowdata, es-
pecially due to their origin in traditional experimental flow visualization, where a continu-
ous injection of particles into a moving fluid generates sucha streakline. Accordingly, and
making use of equation 4 again, a streaklinek(p0, t0, s, t) can be written asc(p0, s−t, s, t)
with u(t0, s, τ) = s−t+τ . Fort=0 streaklinek equalsp0 = c(p0, s, s, 0), for t=s−t0
streaklinek equalsc(p0, t0, s, t), i.e., a pathlinep of temporal lengtht = s−t0, seeded
at timet0 in locationp0.

• Timelines t(t0, s, t) for time s, seeded at timet0, and parameterized int, are yet another
option of how to investigate steady as well as unsteady flow data. Timelines are defined
to be a parameterized set of points which have been introduced into the flow at timet0
and then advected by the flow fors−t0 time. Accordingly, a timelinet at times can be
written asc(p0(t), t0, s, s) with u(t0, s, τ) = t0+τ .

• Streamlines m(p0, s, t) for time steps, starting in seed locationp0 and parameterized
in t ∈ R+, are a classic methodology for the investigation of steady vector fieldsv with
v(p, t1) = v(p, t2) for any twot1 andt2. They are defined as curves which are tangential
to the flow vectorsv(m(p0, s, t)) in each and every point of the curve. In unsteady flow
fields, streamlines do not take the changes of the vector fieldover time into account, i.e.,
they can be writte asm(p0, s, t) = c(p0, s, s, t) from equation 4 withu(t0, s, τ) beings
(or anything else, e.g.,t0 or t0+τ as above for pathlines). Streamlines illustrate the flow
characteristics of selected time step only.

In the case of steady flow fields, pathlines, streaklines, andstreamlines coincide according to
p(p0, t0, s, t) = k(p0, t0, s, t) = m(p0, s, t). Table 1 summarizes the differences between
pathlines, streaklines, timelines, and streamlines in terms of equation 4.

A second choice with respect to integration-based flow visualization – especially in the con-
text of 3D flow data – is from which kind of seed object the integration is started from. Most

pathlinep(p0, t0, s, t): c(p0, t0, s, t) & u(t0, s, τ) = t0+τ
streaklinek(p0, t0, s, t): c(p0, s−t, s, t) & u(t0, s, τ) = s−t+τ

timelinet(t0, s, t): c(p0(t), t0, s, s) & u(t0, s, τ) = t0+τ
streamlinem(p0, s, t): c(p0, s, s, t) & u(t0, s, τ) = s (or . . . )

Table 1: Summary of how pathlines, streaklines, timelines,and streamlines can be compared to
each other in terms of equation 4.

8



Figure 5: Illuminated streamlines illustrate the flow across a wing ofan airplane (left image, image
courtesy by Zöckler et al. from the ZIB in Berlin, Germany [68]); a streamsurface with streamarrows is
used to selectively depict the flow through a dynamical system (right image [35]).

classic, and conforming to the above discussion, differnt kinds of integral curves (pathlines, etc.)
are commonly used. Sometimes, short variants of these integral curves are used, i.e., pathlets,
streamlets, aso., especially when more of them are to be integrated within a visualization [33].
If curves of this kind are used for flow visualization, then their representation in the visualiza-
tion is an important question. In general, special perceptual challenges can be identified when
1D structures are used in 3D visualization (depth perception is significantly challenged for 1D
objects in 3D space). One opportunity in such a situation is to employ special shading for the
line structures and to generate illuminated streamlines [68, 54]. Figure 5, left image, shows an
example of how illuminated streamlines can illustrate the flow across a wing of an airplane [54].
Another option is to represent the 1D curves by 2D geometric objects, e.g., in the form of a
streamribbon or streampolygon [61].

In addition to integral curves as integrated from seed points, it is also possible to use integral
surfaces – so called streamsurfaces in steady flow fields – which are integrated from seed curves
instead. Assume that the seed curvep0(t), parameterized int, is a dense and continuous set of
seed points in 3D. Then – conceptually – every single seed point along this curve is integrated
over time through the steady flow field:p(s, t) = p0(t) +

∫ s
τ=0

v(p(τ, t)) dτ . The resulting
two-parameter setp(s, t) is then a streamsurface [19, 20]. Even though introduced in the early
1990s, streamsurfaces have become more popular only recently. This most probably is due to
the computational complexity of their calculation [49, 12]. Streamsurfaces are attractive for
flow visualization in 3D because they are conveniently perceived. However, streamsurfaces can
also cause visual clutter if too much of a seed curve is used, if integration is continued for too
long, or if too much divergence is present in the flow. Optionsto deal with these challenges
are to either reduce the geometry load from the visualization, e.g., by cutting out so-called
streamarrows [35], or by modulating the transparency of thestream surface [12]. Figure 5, right
image, shows a streamsurface with streamarrows through a 3Ddynamical system (a 3D model
of chemical reactions [35]).

Of course, it is also possible to take a two-parameter patch as seed set for flow integration:
p(s, t, u) = p0(t, u) +

∫ s
τ=0

v(p(τ, t, u)) dτ . The three-parameter setp(s, t, u) is then called a
flow volume and volume rendering is to be employed for visualization [37].

As last aspect of integration-based flow visualization, which is discussed in this review,
we address the issue of seeding. In the case of integration-based flow visualization, always a
selective visualization is generated – a comparably small set of selected integral objects is used

9



for visualization. The more selective this visualization is, e.g., just one streamsurface is used
for visualization, the more critical the question of seeding becomes – where to actually start
the integral object. Several solutions have been publishedfor this challenge, e.g., approaches to
generate evenly-spaced streamlines [23, 60], or such whichenable interactive placement of seed
locations [4, 50].

3.4 Feature-based Flow Visualization

Up to now, we have discussed direct, texture-based, and integration-based visualization of dif-
ferential information. Still remaining in this review is the very large class of visualization tech-
niques which build on a significant amount of processing ahead to the actual visualization map-
ping. Due to the large number of already published approaches, only a rough outline is provided
here and the reader is refered to a more extensive overview which recently has been published
elsewhere [41, 40].

Obviously, there are many possible ways of preprocessing the data before visualization is
applied. In this review, we will only focus on a subset of relatively common approaches.

Topology-based Flow Visualization

One important approach to analyzing differential information is to first do some more mathe-
matical analysis on the data before visualization is used. Analysis is done to identify subsets
of the flow domain which exhibit behavior that is similar in terms of long-term evolution, e.g.,
all stream lines within such a region converge to a joint attractor. It is noted that most of the
previous work on topology-based flow visualization has focused on the case of steady data.
Only recently, approaches to the topology-based visualization of unsteady flows are being de-
veloped [59].

To extract the topology of a flow field or a dynamical system, first the critical points
are identified, i.e., all configurationsp∗ of the flow domain in which there is no flow, i.e.,
v(p∗) = 0 [17, 18]. Next, the flow is investigated in the local surrounding of the critical points.
This is done through the approach of local linearization. Utilizing the Taylor expansion ofv
aroundp∗, i.e.,

v(p∗+∆p) =
∑

i≥0 (∆p · ∇)i v |p∗ = v(p∗) + ∆p · ∇v |p∗ + O(∆p)2 ,

neglecting the terms of second as well as higher order (O(∆p)2), and substitutingv(p∗) = 0
due to the main characteristic of critical points, we identify the Jacobian matrix∇v |p∗ of flow v

in critical pointp∗ as the locally dominating flow component. Matrix∇v induces linear flow
behavior around (non-degenerated) critical pointsp∗ and its characteristics are described by
the eigenvalues and eigenvectors of this matrix. Negative/positive eigenvalues correspond to
attracting/repelling behavior along directions which aregiven by the associated eigenvectors.
Eigenvalue pairs with a non-zero imaginary component correspond to flow which rotates around
the critical point. Accordingly, critical points are classified into the non-degenerated cases of
nodes (either attractors or repellors), foci (rotating behavior), and saddles. Once, the critical
points are identified and classified, it is often interestingto investigate characteristic streamlines
as emanating fromp∗ into the direction of the eigenvectors of∇v |p∗ . Thereby, the relation
between critical points is investigated and so-called separatrices are computed (flow exhibits
significantly different long-term behavior on either side of a separatrix, e.g., converging to dif-
ferent attractors). There are many examples in which the topological skeleton of a flow field
was utilized for visualization [18, 32]. In figure 6, left image, an example for a topology-based
visualization of a 3D dynamical system is shown.

10



Figure 6: Topology-based visualization of a 3D dynamical system (left side [32]). Visualization of a
periodic dynamical system in 3D based on a Poincaré map (right side [34])

In addition to critical points, also critical structures ofhigher order can be investigated. Most
important next to critical points are closed trajectories,i.e., cycles. They are defined as all
pointsp∗∗ for which c(p∗∗, s−T, s, T ) = p∗∗ andT > 0 holds (using equation 4 again with
u(t0, s, t) = s for steady flows). Typically, cycles are more difficult to identify, but useful
algorithms have been proposed recently [67, 66, 58]. Once detected, also closed streamlines
can be classified similar to critical points. In general, ak-dimensional critical structure in an
n-dimensional flow (k < n) can always exhibit attracting/repelling behavior as associated with
selected directions. Saddle behavior as well as rotating behavior can only be found for critical
structures of dimensionk ≤ n−2. An non-degenerated invariant torus, for example, in a 3D
vector field, only has codimensionn−k = 1 and thus may only be either attracting or repelling.

Cycles are not only more difficult to extract but also to visualize in an abstracted form (as
compared to the topology-based visualization based on critical points). One interesting approach
is to utilize Poincaré maps for this purpose. Poincaré maps are an(n−1)-dimensional abstraction
of nD flow near closed streamlines. A Poincaré mapP is related to an(n−1)-dimensional
Poincaré sectionΠ in such a way that anyp ∈ Π is related to aP(p) ∈ Π if it is possible to
find aP(p) = c(p, s−T, s, T ) for a minimalT > 0 such thatP(p) ∈ Π. According to the
definition of closed streamlines (see above), pointsp∗∗ ∈ Π are related to themselves through
P: P(p∗∗)=p∗∗ (pointsp∗∗ ∈ Π are critical points of mapP). This abstraction of flow nearby
closed streamlines can be used for visualization [34]. Figure 6, right image, shows an example
of a Poincaré map based visualization of a periodic dynamical system in 3D.

Feature Extraction for Flow Visualization

In addition to topology-based flow visualization, also flow visualization which builds on the
extraction of other kinds of flow features such as vortices (see below), shock waves [36, etc.],
attachment/detachment points [24, etc.], or recirculation zones [14, etc.] are very popular. Es-
pecially in the domain of vortex extraction, a lot of research has been done [40, 41].

Different approaches have been proposed to detect those subsets of a flow which are char-
acterized by a signififcant amount of local rotation. One subset of algorithms identifies vortical
regions, e.g., by searching for regions of high amounts of flow vorticity ∇×v [63], or by inves-
tigating helicity(∇× v) · v, i.e., vorticity projected onto the flow [30]. Other algorithms focus
on the identification of vortex core lines (instead of vortical regions). One approach is to follow

11



Figure 7: The parallel vector technique [38] applied to flow through a draft tube in turbomachinery
design (left image, image courtesy by M. Roth et al., ETH Zürich [46]); Sample result from a geometric
vortex extraction technique (right image, image courtesy by I. Sadarjoen et al., Delft University [48]).

streamlines from critical points [13]. Another is to consider streamlines of the vorticity field [1],
also taking flow pressure into account (flow vortices are characterized by locally low pressure).
A very popular algorithm is to search for locations in which the vorticity field is parallel to the
velocity field [47, 38, 46]. In figure 7, left side, the application of the parallel vector technique is
illustrated in the context of flow through a draft tube in turbomachinery design [38, 46]. Another
very popular algorithm is to search for locations in the flow where the gradient of the flow (∇v)
exhibits two eigenvalues with non-zero imaginary components, i.e., rotating flow behavior, and
where the eigenvector which is associated with the real-values eigenvalue is aligned with the
flow [55, 25].

In addition to algorithms which are based on the analysis of local flow characteristics, also
algorithms which utilize information from a larger neighborhood are very interesting. One
algorithm utilizes combinatorial topology (Sperma’s theorem) for the detection of vortex core
lines [21]. Another paper introduces two geometric techniques for the detection of rotating
flow substructures [48]. A sample result from their application is shown in figure 7, right side,
indicating vortices in ocean flow in the northern Atlantic.

Interactive Feature-based Flow Visualization

Alternatively to approaches which aim at the as automatic aspossible extraction and visualiza-
tion of flow features, the approach of interactive feature extraction and visualization (as recently
developed at the VRVis Research Center, www.SimVis.at) is worth mentioning.

In this approach, the goal is (a) to put forth the rich varietyof contents in a large and multi-
dimensional flow simulation dataset by visualizing selected subsets of the data in an intuitive
way, (b) to provide a flexible set of interaction mechanisms which enables the user to conve-
niently formulate his or her interests in the data in the formof implict feature characteristics
(example: slow but nevertheless hot flow which also is near tothe boundary surface of a cooling
jacket), and (c) to concurrently provide a 3D focus+contextvisualization of the simulation data
which relates the focus–context discrimination to the current user interest. To realize this goal,
the following technological components have been developed and integrated (more information
is provided by a related paper [16]):

• Selected visualization views such as histograms, scatterplots, and parallel coordinates, are
used to put whatsoever data attributes in a visual relation to each other. In figure 8, for
example, a CFD dataset is visualized by the means of a histogram ((d), velocity values
alongx), a 2D scatterplot ((b), velocities onx, turbulence values ony), a 3D scatterplot

12



Figure 8:A CFD dataset is visualized by the means of a histogram of velocity values (d), a scatterplot
“velocities vs. turbolence values” (b), a 3D scatterplot “velocities, turbolence, temperatures” (c), and
parallel coordinates (a).

((c), velocities, turbulence and temperature values), and a plot of parallel coordinates
((a), eight different flow attributes shown). In the two scatterplots and in the histogram
brushes are used to mark subsets of special interest. In figure 8(a), one axis (showing
velocity values) is used to color the polylines – this eases to relate data items across
multiple dimensions.

• An approach calledlinking & brushingin visualization [5, etc.] is used in SimVis to allow
for interactive visual analysis of high-dimensional and complex datasets [8]. Multiple
views are used to all jointly display one dataset under investigation. Brushing enables
the user to interactively mark certain subsets of the data asbeing of special interest – the
user directly brushes the displayed data in one of the views or uses off-screen sliders and
direct numerical input widgets to tell the system what he or she (currently) focuses on.
Linking between views ensures that the entire visualization is visually consistent, i.e., in
all the views the same data subsets are consistently visually enhanced (or deemphasized),
for example, by everywhere coloring the data in focus red.

In figure 9, three scatterplots and three histograms have been used to specify the current
focus in the visualization of a simulation of hurricane Isabel (cloud structures and land).
The scatterplots(ca), (cv), and(av), and the histogram(h) are used to highlight all those
parts of the clouds in the hurricane which exhibit a significant amount of wind speed(cv),
which do not raise up too high into the atmosphere(h), and which either move noth or
south (two 3D brushes inca andav). The distinction between north and south winds
enables to detect an interesting flow behaviour in the north of the hurricane. For the
purpose of additional orientation, a (dimmed) visualization of the east cost of America
has been added through (partly) selecting the respective cells in two histograms (h’ &
h”). The 3D view(3D) provides a spatial and also time-dependent 3D visualization (color
visualizes wind directions, green: north, purple: south).

13



Figure 9: The simulated hurricane Isabel is visualized. Through the use of three scatterplots and a
histogram, relatively fast clouds are emphasized which do not raise too high up into the atmosphere –
only winds which are (at least to some extent) aligned north-south are highlighted to reveal an interesting
flow structure in the north of the hurricane. Additionally, the land is shown for geographical reference.

• The interactive process of semantically annotating the data (through brushing) to differ-
entiate between more and less interesting parts of the data consequently causes the views
to show a (so called) focus+context visualization of the data [15, & refs. therein]. Data
subsets in focus are visually enhanced as compared to their context, i.e., the rest of the
data, which is just shown in reduced form, e.g., less opaque and not colored, to provide a
visual reference for the current focus and to ease orientation and navigation. In SimVis,
the approach of focus+context visualization also has been extended to the more traditional
views, i.e., the 3D rendering of the data. Data in focus is visually discriminated from the
context by selective coloring as well as by variations of opacity and style.

Figure 10, left side, demonstrates how focussing allows to reveal interesting structures in
a 3D dataset. In(F+C) the interface between water and air has been selected in a two-
phase simulation of the flood after the breaking of a dam and its effect on an obstacle in
the flow (color: flow velocities). In(C) no feature has been selected whereas in(F) all the
cells are shown in the same style – whereas in(C) too little is shown, in(F) too much is
visualized.

In figure 10, right side, all those cells in a diesel particulate filter (DPF) for passenger cars
have been highlighted which are characterized by the presence of lots of CO andCO2 and
which also exhibit relatively high temperatures (color shows flow velocities) – thereby
the front of an oxidation process is shown in the DPF which is used for the periodic
regeneration of the filter [10].

In figure 11, all those cells in a45◦ subset of the combustion chamber (in one cylinder
of a diesel engine) are highlighted (at four different time steps of the simulation) where
the combustion already is well progressed while still a significant amount of diesel is left
(an undesired situation) – color visualizes the amount of O2 in the cells. The respective
analysis [9] affirms that combustion stops too early becausetoo little oxygen is collocated
with the fuel mixture to be burnt in certain locations.

• In addition to the above mentioned points (visualizing attribute space, establishing a link-
ing&brushing framework for interactive data analysis, andusing focus+context visual-
ization to incorporate a notion of user interest), the importance of interaction should be

14



Figure 10:Example for the visual discrimination of data subsets in focus from the respective context (left
side). The flood as resulting from a breaking dam is shown together with its effect on an obstacle. Only
through the (interactive) focussing on specific subsets of the data (in this example the interface between
water and air in “F+C”), meaningful images can be produced. —The front of an oxidation process in
a diesel particulate filter (DPF) is shown (right side [10]),which is used for the periodic regeneration of
the filter – all those cells are highlighted which exhibit large amounts of CO and CO2 while at the same
time being relatively hot. Color shows flow velocity.

emphasized. Ben Shneiderman’s visual information seekingmantra [51] well describes
the main character of working with SimVis: First, some sort of overview visualization
is needed – the user wants to get oriented, understand the main features of the data, etc.
Then, as soon as specific questions about the data arise, the user wants to perform an
information drill-down which allows to gradually refine a feature specification, before at
a certain point of the detailed analysis the user might want to export the results of the
analysis, for example, to compare a result with another analysis of another dataset.

More information about SimVis and related technology can beacquired from the SimVis home
page (www.SimVis.at) or from related papers [8, 9, 10, 16, etc.]

4 Summary and Conclusions

In this paper, we have reviewed a subset of visualization approaches to the challenge of how to
enable visual exploration, analysis, and presentation of differential information. An overview
has been given of several useful directions, including direct flow visualization (section 3.1),
texture-based flow visualization (section 3.2), integration-based flow visualization (section 3.3),
and feature-based flow visualization (section 3.4). It is worth mentioning, however, that the
current state of the art still is much richer than outlined inthis review – more approaches and
more references to related literature can be found in other,more extensive reviews [40, etc.].

Concluding, it can be stated that flow visualization has beenresearched extensively in the
past decades. There are solutions for a spectrum of application questions. The large variety of

15



Figure 11:Four time steps of a combustion process are shown [9], focussing on cells where the com-
bustion is well progressed but where still a significant amount of diesel is left (undesired) – color shows
the amount of oxygen at this cells (in cells with too little oxygen the combustion terminates too early).

reasonable solutions results from the fact that flow visualization solutions always are dependent
on the user task at hand. Different techniques are to be used for the purpose of flow exploration
vs. flow presentation, for example. Also, different solutions apply dependent on whether 2D
or 3D flow is to be shown. Finally, even in cases where one flow visualization methodology
applies to several different application cases, differences might become evident with respect to
the implementation of the respective techniques. A flow visualization algorithm for analytically
specified dynamical systems, for example, can be significantly different to the same algorithm
when applied to simulation data, given on an unstructured grid. This altogether might be respon-
sible for the fact that (by now) there isn’t any all-in-one premade visualization system which can
be used for whatsoever application. However, still many solutions exist already ready to use.

Acknowledgements

Parts of this work have been done in the scope of strategic research at the VRVis Research
Center in Vienna, Austria, http://www.VRVis.at/, which isfunded by an Austria governmental
research program called Kplus. The author also thanks his colleagues which participated in
related research, especially Robert S. Laramee and Helmut Doleisch.

References

[1] D. C. Banks and B. A. Singer. A predictor-corrector technique for visualizing unsteady flow.IEEE
Transactions on Visualization and Computer Graphics, 1(2):151–163, 1995.

[2] C. A. Brewer. Color use guidelines for mapping and visualization. In MacEachren and Taylor,
editors,Visualization in Modern Cartography, pages 123–147. Elsevier Science, 1994.

[3] C. A. Brewer and M. Harrower. ColorBrewer. On-line colorbrewing tool available from URL
http://www.colorbrewer.org/, 2002.

[4] St. Bryson and C. Levit. The virtual wind tunnel.IEEE Computer Graphics and Applications,
12(4):25–34, July 1992.

[5] A. Buja, J. McDonald, J. Michalak, and W. Stuetzle. Interactive data visualization using focusing
and linking. InProc. of IEEE Visualization ’91, pages 156–163, 1991.

[6] B. Cabral and L. C. Leedom. Imaging vector fields using line integral convolution. InProc. of ACM
SIGGRAPH ’93, pages 263–272, 1993.

[7] R. Crawfis, N. Max, B. Becker, and B. Cabral. Volume rendering of 3D scalar and vector fields at
LLNL. In Proc. of Supercomputing ’93, pages 570–576.

[8] H. Doleisch, M. Gasser, and H. Hauser. Interactive feature specification for focus+context visual-
ization of complex simulation data. In5th Joint IEEE TCVG - EG Symp. on Visualization (VisSym
2003), pages 239–248, 2003.

16



[9] H. Doleisch, M. Mayer, M. Gasser, P. Priesching, and H. Hauser. Interactive feature specification
for simulation data on time-varying grids. InProc. Simulation and Visualization Conf. (SimVis ’05),
pages 291–304, 2005.

[10] H. Doleisch, M. Mayer, M. Gasser, R. Wanker, and H. Hauser. Case study: Visual analysis of
complex, time-dependent simulation results of a diesel exhaust system. In6th Joint IEEE TCVG -
EG Symp. on Visualization (VisSym 2004), pages 91–96.

[11] D. S. Ebert, R. Yagel, J. Scott, and Y. Kurzion. Volume rendering methods for computational fluid
dynamics visualization. InProc. of IEEE Visualization ’94, pages 232–239, 1994.

[12] Chr. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G.Scheuermann. Surface techniques for
vortex visualization. InProc. Joint EG – IEEE TCVG Symp. on Vis., pages 155–164.

[13] A. Globus, C. Levit, and T. Lasinski. A tool for visualizing the topology of three-dimensional vector
fields. InProc. of IEEE Visualization ’91, pages 33–40, 1991.

[14] R. Haimes. Using residence time for the extraction of recirculation regions. Technical Report AIAA
Paper 99–3291, American Institute of Aeronautics and Astronautics, 1999.

[15] H. Hauser. Generalizing focus+context visualization. In G.-P. Bonneau, Th. Ertl, and Gr. Nielson,
editors,Scientific Visualization: The Visual Extraction of Knowledge from Data, pages 305–327.
Springer, 2005.

[16] H. Hauser and H. Doleisch. About SimVis and the related state of the art. Technical Report TR-
VRVis-2004-028, VRVis Research Center, 2004.

[17] J. L. Helman and L. Hesselink. Representation and display of vector field topology in fluid flow
data sets.IEEE Computer, 22(8):27–36, August 1989.

[18] J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid flows. IEEE Computer
Graphics and Applications, 11(3):36–46, May 1991.

[19] J. P. M. Hultquist. Interactive numerical flow visualization using stream surfaces.Computing
Systems in Engineering, 1(2-4):349–353, 1990.

[20] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector fields. InProc. of IEEE
Visualization ’92, pages 171–178, 1992.

[21] M. Jiang, R. Machiraju, and D. Thompson. A novel approach to vortex core region detection. In
Data visualisation 2002, pages 217–225. Eurographics Association, 2002.

[22] Br. Jobard, G. Erlebacher, and Y. Hussaini. Lagrangian-Eulerian advection of noise and dye textures
for unsteady flow visualization.IEEE Trans. on Visualization and Computer Graphics, 8(3):211–
222, 2002.

[23] Br. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density. InProc. of the
EG Workshop on Visualization in Sci. Computing ’97. Springer, 1997.

[24] D. N. Kenwright. Automatic detection of open and closedseparation and attachment lines. InProc.
of IEEE Visualization ’98, pages 151–158, 1998.

[25] D. N. Kenwright and R. Haimes. Automatic vortex core detection. IEEE Computer Graphics and
Applications, 18(4):70–74, 1998.

[26] R. S. Laramee, H. Hauser, H. Doleisch, Fr. H. Post, B. Vrolijk, and D. Weiskopf. The state of the art
in flow visualization: Dense and texture-based techniques.Computer Graphics Forum, 23(2):203–
221.

[27] R. S. Laramee, Br. Jobard, and H. Hauser. Image space based visualization of unsteady flow on
surfaces. InProc. of IEEE Visualization 2003, pages 131–138.

[28] R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauser.Investigating swirl and tumble flow with
a comparison of visuaization techniques. InProc. of IEEE Visualization 2004, pages 51–58.

[29] H. Lefkowitz and G. T. Herman. Color scales for image data. IEEE Computer Graphics & Appli-
cations, 12(1):72–80, January 1992.

17



[30] Y. Levy, D. Degani, and A. Seginer. Graphical visualization of vortical flows by means of helicity.
AIAA Journal, 28:1347–1352, 1990.

[31] H. Löffelmann.Visualizing Local Properties and Characteristic Structures of Dynamical Systems.
PhD thesis, Vienna Univ. of Techn., 1998. www.VRVis.at/vis/resources/diss-HL.

[32] H. Löffelmann, H. Doleisch, and E. Gröller. Visualizing dynamical systems near critical points. In
14th Spring Conference on Computer Graphics, pages 175–184, April 1998.

[33] H. Löffelmann and E. Gröller. Enhancing the visualization of characteristic structures in dynamical
systems. InProc. EG Workshop on Vis. in Sci. Computing, pages 35–46, 1998.

[34] H. Löffelmann, Th. Kučera, and E. Gröller. Visualizing Poincaré maps together with the underlying
flow. In Mathematical Visualization, pages 315–328. Springer Verlag, 1998.

[35] H. Löffelmann, L. Mroz, E. Gröller, and W. Purgathofer. Stream arrows: Enhancing the use of
streamsurfaces for the visualization of dynamical systems. The Visual Computer, 13:359–369,
1997.

[36] Kw.-L. Ma, J. van Rosendale, and W. Vermeer. 3D shock wave visualization on unstructured grids.
In Proc. Symp. Volume Visualization, pages 87–94, 1996.

[37] N. Max, B. Becker, and R. Crawfis. Flow volumes for interactive vector field visualization. InProc.
of IEEE Visualization ’93, pages 19–24.

[38] R. Peikert and M. Roth. The parallel vectors operator – avector field visualization primitive. In
Proc. of IEEE Visualization ’99, pages 263–270, 1999.

[39] Fr. H. Post and Th. van Walsum. Fluid flow visualization.In Focus on Scientific Visualization,
pages 1–40. Springer, 1993.

[40] Fr. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Feature extraction and visual-
ization of flow fields. InEG 2002 State-of-the-Art Reports, pages 69–100, 2002.

[41] Fr. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state of the art in flow
visualization: Feature extraction and tracking.Computer Graphics Forum, 22(4):775–792, Dec.
2003.

[42] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipies. Cambridge
University Press, 1986.

[43] S. Rinaldi. Nonlinear dynamical systems: Bifurcationand chaos with applications in ecology.
Notes to a lecture held at the Inst. of Econometrics, Vienna Univ. of Technology, May 1995.

[44] B. E. Rogowitz and Ll. A. Treinish. Why should engineersand scientists be worried about color?
See URL http://www.research.ibm.com/people/l/lloydt/color/color.HTM.

[45] B. E. Rogowitz and Ll. A. Treinish. Data visualization:the end of the rainbow.IEEE Spectrum,
35(12):52–59, December 1998.

[46] M. Roth. Automatic Extraction of Vortex Core Lines and Other Line-Type Features for Scientific
Visualization. PhD thesis, ETH Zürich, Switzerland, 2000. On-line materials available from mar-
tin.nobilitas.com/turbo/phdthesis.

[47] M. Roth and R. Peikert. Flow visualization for turbomachinery design. InProc. of IEEE Visualiza-
tion ’96, pages 381–384, 1996.

[48] I. A. Sadarjoen and Fr. H. Post. Geometric methods for vortex extraction. InData Visualization ’99,
Eurographics, pages 53–62. Springer-Verlag Wien, 1999.

[49] G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hamann, K. Joy, and W. Kollmann. A
tetrahedral-based stream surface algorithm. InProc. of IEEE Visualization 2001, pages 151–157.

[50] M. Schulz, F. Reck, W. Bartelheimer, and Th. Ertl. Interactive visualization of fluid dynamics
simulations in locally refined cartesian grids. InProc. IEEE Visualization ’99, pages 413–416.

[51] B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualization. In
Proc. IEEE Symp/ on Visual Languages, pages 336–343, 1996.

18



[52] D. Silver, Fr. H. Post, and I. Sadarjoen.Flow Visualization, volume 7 ofWiley Encyclopedia of
Electrical and Electronics Engineering, pages 640–652. John Wiley & Sons, 1999.

[53] D. Stalling and H.-Chr. Hege. Fast and resolution independent line integral convolution. InProc.
of ACM SIGGRAPH ’95, pages 249–256.

[54] D. Stalling, M. Zöckler, and H.-Chr. Hege. Fast display of illuminated field lines.IEEE Trans. on
Visualization and Computer Graphics, 3(2), 1997.

[55] D. Sujudi and R. Haimes. Identification of swirling flow in 3D vector fields. Technical Report
AIAA Paper 95–1715, American Institute of Aeronautics and Astronautics, 1995.

[56] A. Telea and J. J. van Wijk. Simplified representation ofvector fields. InProc. of IEEE Visualiza-
tion ’99, pages 35–42, 1999.

[57] H. Theisel. Visualizing the curvature of unsteady 2D flow fields. InProc. of the 9th EG Workshop
on Visualization in Sci. Computing, pages 47–56, 1998.

[58] H. Theisel, T. Weinkauf, H.-Chr. Hege, and H.-P. Seidel. Grid-independent detection of closed
stream lines in 2D vector fields. InProc. of the Vision Modeling and Visualization Conference 2004
(VMV 04), pages 421–428, 2004.

[59] H. Theisel, T. Weinkauf, H.-Chr. Hege, and H.-P. Seidel. Topological methods for 2D time-
dependent vector fields based on stream lines and path lines.IEEE Trans. on Visualization and
Computer Graphics, 11(4):383–394, 2005.

[60] Gr. Turk and D. Banks. Image-guided streamline placement. In Proc. of ACM SIGGRAPH ’96,
pages 453–460, 1996.

[61] S. K. Ueng, C. Sikorski, and Kw.-L. Ma. Efficient streamline, streamribbon, and streamtube con-
structions on unstructured grids.IEEE Trans. on Visualization and Computer Graphics, 2(2):100–
110, June 1996.

[62] J. J. van Wijk. Spot noise – texture synthesis for data visualization. InProc. of ACM SIG-
GRAPH ’91, volume 25, pages 309–318, 1991.

[63] J. Villasenor and A. Vincent. An algorithm for space recognition and time tracking of vorticity
tubes in turbulence.Computer Vision, Graphics, and Image Processing: Image Understanding,
55(1):27–35, 1992.

[64] R. Wegenkittl, H. Löffelmann, and E. Gröller. Visualizing the behavior of higher dimensional
dynamical systems. InProc. of IEEE Visualization ’97, pages 119–125, 1997.

[65] R. Westermann. The rendering of unstructured grids revisited. InProc. Joint EG – IEEE TCVG
Symp. on Visualizatation (VisSym 2001), pages 65–74. Springer-Verlag, May 28–30.

[66] Th. Wischgoll and G. Scheuermann. Locating closed streamlines in 3D vector fields. InProc. Joint
EG – IEEE TCVG Symp. on Visualizatation (VisSym 2002), pages 227–280.

[67] Th. Wischgoll, G. Scheuermann, and H. Hagen. Tracking closed streamlines in time dependent
planar flows. InProc. of the Vision Modeling and Vis. Conf. 2001 (VMV 01), pages 447–454.

[68] M. Zöckler, D. Stalling, and H.-Chr. Hege. Interactive visualization of 3D vector fields using
illuminated streamlines. InProc. of IEEE Visualization ’96, pages 107–113, October 1996.

19


