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Abstract—  Visualization of time-dependent simulation data,
such as datasets from CFD simulation, still is a very challeging
task. In this paper, we present a new approach to the interadte
visual analysis of flow simulation data which is especiallyargeted
at the analysis of time-dependent data. It supports the flekie
specification and visualization of flow features in an interative R
setup of multiple linked views. Special emphasis is put on .
new mechanisms to capturetime-dependent features, i.e., flow t= 12 sec
features which are inherently dependent on time. We proposthe -
integration of attribute derivation into the process of interactive
visual analysis to enable the subsequent user access to athise
implicit properties of the unsteady data in our interactive feature
specification framework. All views of this flow analysis setp are
linked in the sense that the features in focus are consistdgt
emphasized in the visualization (more colorful, less transarent)
whereas the rest of the data is only shown as context in redude
style. In addition to introducing our new approach, we also
demonstrate its use in the context of several application exnples.

Index Terms— interactive feature specification, time-
dependent features, focus+context visualization, timeabendent
flow visualization, multi-dimensional data visualization

I. INTRODUCTION

HESE days, many researchers and practitioners ag
focus on the visual analysis of results from computation
flow simulation, since it eventually has become possible
investigate realistic flow scenarios in three spatial disiems,
which vary over time, and which are represented as large dfigl 1. The effect of a flood, resulting from the burst of a dam e right),
multi-variate datasets, Comprised of dozens of attribirreed- S visualized in a feature-based 3D visualization. Grichtans which exhibit
. . . . . . a temporal maximum (red) or minimum (green) wrt. the pergatof water
sions per location In Space and time. |t. IS a spemal per@pt% the cell have been specified as the flow feature in focus.
challenge to effectively convey multi-dimensional and tiaul
variate data with visualization. Feature-based appraaf2
are attractive because they allow to focus on specific ssiloet . o
the flow (eature3, while setting aside the rest of the data, anfi- APProaches to feature-based flow visualization
to thereby enable a targeted and detailed analysis of the fl@&ining thorough insight into flow simulation data is indeed
data. In figure 1, for example, the effects of a flood (causeeéry challenging. One reason for this is that not all of the
by a breaching dyke) are analyzed in the vicinity of a nearligteresting information in the data also is explicitly repented
object by visually focussing onto the temporal changes ef tin the form of first-order data attributes in the files. Flow-vo
water level as the time-dependent feature in this case. tices, for example, usually are not directly accessibleuh
In the following, we discuss different approaches to featurexplicit data attributes, but implicitly represented ire ttata.
based flow visualization and address related work, before Waking this consideration a step further, we can think of the
propose our new approach and discuss our interactive &eatinformation content of such a flow simulation dataset asgpein
specification framework. given in alayered feature spacavhere deep layers stand for
complex (and implicit) relations in the data, e.g., a voroex
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Fig. 2. The layered feature space: attribute derivationextended brushing
form a hybrid, feature-based visualization approach.
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layered feature space.
Feature-based flow Y'Sual_'zat'qn requires tha.t the user hﬁgs 3. Scheme for the interactive specification and vigatibn of

access to data properties, either in the form of first-or@éa d time-dependent flow features: interplay aftribute derivation interactive

attributes or from deeper Iayers in the Iayered featuree;pagrushing and iterative refinemenin the context of the multi-variate flow

. . . . ata representation.

A very effective solution for this feature access is to suppo

interactive brushing [32] of data attributes — brushing nsea

that the user can interactively mark up the interestingspairt

the data by interactively “brushing” their visual repreisgion from the deep levels in the layered feature spacathybute

in the visualization view. Given a scatterplot, for exampléh derivation For every data itene;, we compute (on demand)
' piot, ’ additional, synthetic data attribute@"{- or n"-order data

temperature values relating to thyecoordinates of all points, . : N
P . . g b b attributes) as mathematical combinations of other, airead
a user could interactively select the hot subsets of the afata . . : : :
. . ; iven or previously computed data attributes as illustrate
the current feature of interest by just drawing a rectarngul . -
|$ure 3. This happens, for example, through the application

\t/)irsuusgli;z;/t(iac:ntrslss?eprggrapgcrettso?;(;t]/:ncszggtitreltr:rlggtil; %C;;Zdlr(]) specific filters or by the use of formulas which describe the
is available to ease tr’1e interactive brushing of first-outa physical/chemical relations of interest within the flow alat

attributes (see related work section). On the other hand, we provide the user wabvanced

Additionally, there also are advanced approaches to dxtrQEUSh'ng mechanismso that the f,IOW features can be easily
the “deep treasures” from the layered feature space, be_'gtrasped, even from lower levels in the layered feature space

access and visualize also complex relations within the.da?é]d taken further to expressive focus+context visuabrati

Usually, sophisticated computations are used to extraxteth Logical combinations oftseledctions t&brushes), which are fo
: . st ond. - .
parts of the data which correspond to the respective fIdVvUIatEd with respect t6°-, 2", or n"-order data attributes,

features. Special challenges include the extraction of- notf" be useddto acc;:_s_s aITO fa|rl?/ Cl;) mprITex relations (fesjture
local relations, computationally expensive extractiorthods, as compared to traditional, simple brushing.

and numerically unstable feature specifications. Ofteaiuie One advantage of our approach is that users can easily
extraction techniques also pose non-negligible challerige ,,qerstand how the feature-based visualization is coctetiu
the user to fully comprehend what the feature extractialq how the results are to be interpreted. To analyze the
process actually is doing (and which result it actually\dﬁﬁs)._ _effectiveness of a cooling jacket, for example, a user would
In many cases, the extracted flow features are expliciffys; se attribute derivation to represent local tempeeatu
represented in the visualization, for example, by the meaps,,ima in the form of a new synthetic data attribute, and
of boundary surfaces or glyphs. Often, the rest of the dgja., select all those data subsets for subsequent visugsana
is not shown at all, yielding significant compression ratés @ i-h exhibit both high temperature maxima and low flow
several orders of magnitude [26], but additionally stregshe | ¢|5cities in the same places (locations of insufficiention.
challenges of comprehension. This approach provides a large amount of flexibility during
In this paper, we propose a new and hybrid approach to tfeature specification, supports the comprehension of the fe
feature-based visualization of simulation data whichvedldo ture extraction process, and is well-aligned with focusiext
utilize the advantages of interactive brushing as well aseh visualization, where features are visually emphasizedas c
of feature extraction. pared to the rest of the data, which only is provided as cantex
On the one hand, we “lift up” implicit data propertiesn reduced style for improved orientation and navigation.



B. Related work

In the field of flow visualization, many different approacheg

have been proposed up to now, especially for 2D flows and fgr

steady flows. A detailed overview about different visualma &

methods and feature extraction techniques is availablenin 3 | | .

overview paper by Post et al. [25]. Po p, Damvalves o Ps

For the visualization of3aD unsteady flowsalso several

approaches have been presented. One way to visualize kig-4. A 1D smooth brush results in a trapezoidal DOI functawcording

steady flow data is the use of (moving) isosurfaces or arroffs"auation 1.

on boundary surfaces as presented by Treinish in a visual-

ization of unsteady weather data [31]. Another approach is . . . .

. o , visualization as well as performance improvements, which

to use volume visualization. Swan et al. apply direct volume ;
. : : o . have become necessary to handle large datasets. Finally, we

rendering techniques to flow visualization in a system Whlcé]emonstrate our approach in the context of two aoplications

supports computational steering [30]. Clyde and Dennigfb] PP PP

well as Lum et al. [21] present volume rendering for time-

varying vector fields using algorithms which make special us II. THE SIMVIS SYSTEM

of graphics hardware to accelerate the rendering process. 1o achieve feature-based flow visualization for data explo-

In contrast to direct volume rendering, feature-based apgion and analysis, we provide 3D flow visualization togeth
proaches profit from an early reduction of the data (ahegg, gifferent kinds of attribute views. Advanced interiact
of visualization) so that not all of the data is visualizeghochanisms enable the user to intuitively specify featimes
concurrently in full d_etai_l. For fe_ature-baseql visuali@aal ihe flow data. Multiple, linked views (compare to Baldon-
proper feature extraction is essential. Depending on theabc 54 [3]) are used to concurrently show different aspectsef t
application, flow features typically include vortices, 6RO fioy data. In the visualization, the flow features are visuall
waves, separation and attachment structures, recirenlatyjscriminated from the rest of the data in a focus+context
zones, etc. [26]. Many different approaches to featureaextr y;isyalization style which is consistent in all views [15].
tion have been proposed. For the detection of regions of highgq interactive feature specification, attribute visuatian
vorticity or vortex core lines, Kenwright and Haimes [19]iews such as scatterplots [24], histograms [20], etc. uaeel.
Bauer et al. [4], and Roth and Peikert [23][28] proposed agme yser chooses to visually represent selected datauttsib
vanced approaches. Additionally, many otherfeatu_re_eb'a_m in such a view, thereby gaining insight into the selected
methods have been presented — due to space limitations Weions within the data. Then the interesting subsetdef t
provide a more thorough review in another paper [26].  gata are interactively brushed directly on the screen (eoenp

In our case, an additional challenge is to include the tert¢ the XmdvTool [32], and see figures 5¢c and 5d). The result
poral dimension into the feature specification process.tMd¥ such a brushing operation, i.e., a notion of user intgrest
feature extraction techniques for unsteady data extratafes is reintegrated within the data in the form of a syntheticadat
in individual time steps [27][29]. Usually, feature traogiis attribute DOI; € [0,1] (degree of interest (DOI) attribution
then used to match the features of successive time steps @hthe data, compare to Furnas [11]).
thereby reconstruct a notion of time-dependent features. The SimVis system supporssnooth brushing7] (to enable

Up to now, only little work has been done on interactivéractional DOIl-values) as well as the logical combinatidn o
feature specification. Henze developed a technique to Nysuadrushes for the specification obmplex featuref]. A smooth
analyze time-varying data from CFD simulation (computdrush results in a trapezoidal DOI function as defined below
tional fluid dynamics) by using multiple, linked portrait3l{ and illustrated in figure 4.
plots, also showing the grid connectivity of the data) in

rest

a system called Linked Derived Spaces [17]. The system %i_po ': diﬁzq

supports a basic brushing and linking functionality and is p—po T POS iSp1
designed for exploratory visualization and feature deact DOI;(di; po, p1,p2,p3) = { 1 . !f m<di<py (1)
in multivariate data. Gresh et al. presented a system called Pl i pa<di<ps
WEAVE [14], which combines the visualization of simulation 0 if di>ps3

dat_a with a 30 V|suaI|zat|_on Of_ the_ simulated structure ang SimVis, DOI attributes and their compositions are exglic
which allows for structural investigation of complex simtibn .o canted in the system [6] and can be interactively &tjus

data} in the 3D contgxt, based on marking data items accord'm ugh a separate graphical user interface to achieve aemp
to different data attributes. Inspired by this work, we deped o0« Do attributes can be saved and reapplied to other
a framework for interactive feature specification for CFDajadatasets (see figure 5a)

in previous work [7][6], called SimVis [2] (see also sectitp For feature-based flow visualization, SimVis provides 3D

In the following, we first briefly describe our feature-basefbcus+context visualization of the flow data in the sense tha
flow analysis framework in general before we detail on odlow features are visually emphasized in the 3D depiction
new approach to time-dependent flow features. Additionaliyrrough coloring and reduced transparency [15]. For each
we also describe some recent extensions to the focus+¢on@&R view, one (fractional) DOI attributeDOI; is used to
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Fig. 5. Typical setup of a working session with the interactieature specification framework: a tree viewer is used anage the feature specification (a);
a 3D visualization view, used to visualize the spatial tee of data using a focus+context visualization appro&ghtvo scatterplots, showing interactively
brushed and refined feature specification parts (c&d).

(smoothly) discriminate the visually enhanced focus frém t features. In the following subsections we discuss thegerfea
rather transparent and grey-scale context (see figure 5b). types one by one. In the SimVis system, attribute derivation
\;\§ issued through the use of a separate interface — the user
chooses which data attribute to derive from, the type ofvderi
tion, and adjusts derivation parameters. For the subséquen
visual analysis through interactive brushing, all datsalaites

(13- as well asnM-order) are equally available.

From the collaboration with our industrial partners we kno
that interactive exploration and analysis of simulatiotadat-
ten follows one of three characteristic interaction pageOne
type of exploration is to search for places in the 3D simatati
grid where certain feature characteristics are predeatyre
localization). In the SimVis system, the user can brush features
in attribute views and concurrently localize the respectiA. Features based on attribute derivatives

feature in the 4D (3D+time) flow domain. Often, users are interested in changes of data attrillteith
Additionally, users also investigate multi-variate datag  respect to time. So we provide the user with access to aribu
erties by specifying a feature in an attribute view and at thgrivatives d\(c,t) = ddi(c,t)/dt). Due to the discrete

same time analyzing the DOI distribution with respect tceoth representation of time in the form of time steps, differahti

data attributes in other attribute views (through view i jnformation is approximated, usually in one of three typica

here calledmulti-variate analysis This sort of analysis also forms: forward, backward, or central differences. In thegis

is inherently supported by the SimVis system. system, central differences are used as a useful compromise
Finally, users also often inspect the values of selected d@etween data smoothing and frequency amplification (side-

attributes with respect to certain spatiotemporal subsetse effect of data derivation) according to the following foriau
flow domain (ocal investigation. In the SimVis system, the

user can also load spatial as well as temporal data refesencg; (c, t,) = di(e, tenn) —di(e,te) | di(e,te) —di(c, tir) )
into attribute views — brushing these kinds of data attebut 2(tep —tr) 2(tk —tr-1)
then yields features which are specified according to theiith this type of derivatives estimation we compensate for
spatiotemporal extents. cases of unevenly spaced time steps in the simulation.
Derivatives are used to detect patterns of changes. One
I1l. I NTERACTIVE SPECIFICATION OF TIME-DEPENDENT example is a search for large temperature changes when
FEATURES investigating the burning front in a combustion chamber.
When analyzing datasets from unsteady CFD simulations,lterative attribute derivation also is an important func-
interactive visualization is very useful. Flexibility witrespect tionality of our approach. Applying derivatives estimatio
to feature specification also is of great utility for the usear repeatedly, for example, results in second-order (or highe
time-dependent data it is necessary to support the spdigfica order) differences. Figure 6 gives an example of how atteibu
of features which are inherently based on time. In the follovderivatives of different orders are used for feature sptifin.
ing, we call features which cannot be extracted from singultn a 3*2D+1*3D scatterplots view, the simulation time (red
time steps of unsteady CFD datane-dependent features  axis), normalized first-order derivatives of temperatgrsen
As a result from an informal user study with applicatioxis), and second-order derivatives of temperatures @tis
engineers we identified five types of important time-depahdeare plotted against each other for the flow dataset from figure
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Fig. 7. Areas in front and behind of a hot inflow front in theatst of fig. 5,
visualized over time. The related feature specificationhms in fig. 6.

O

Fig. 6. Specifying a feature in a 3*2D+1*3D scatterplotswigormalized

15Lorder derivatives (green axis) anB%rder derivatives (blue) of tempera-
ture values are plotted over time. Higher values of bothvdivies are brushed |
in the upper right scatterplot. For a related 3D visual@atsee figure 7. i

A complex brush is used to investigate flow regions in fro
and behind a moving hot inflow front (see figure 7).
Another case of iterative attribute derivation is to firstefil

the data (with respect to time) in a step prior to attribut@'g)- 8. dCOmparison of derivativ?_s (Ic;ef(tj), simple n(()r_m%zd?jrivativrfs (mid-
P - - and zero-preserving normalized derivatives (rigiitje data shown are
derivation. As one often demanded operation, we provi Enperature derivatives in the extended T-junction exanfigm section VI.

smoothing of the data according to

Y otwer, <t 4i(675)- G((E=T75)- 4/w)
fwsTistiw G] — 4‘7 3) For the specification of features relative to data changes,
Ztﬂﬁfjﬁtw ((t=75)-4/w) local data normalization with respect to time is necesdary.

with ¢ denoting the time of the current data item of interest. AZIMViS, data normalization can be applied to any data aiizib

a filter a Gaussian lobe with=1 is used from[—4, 4], scaled 2vailable during investigation. Two conceptually differeer-

to time-interval[—w, w]. For other purposes, of coursg() Sions are available: the local data range of each time step ca

also can be exchanged with any other filter kernel as neede@ Simply mapped to the unit-interval as shown in equation 4.
Alternatively, normalization can be done to thel, 1] interval
such that zeros in the input data also map to zeros in the butpu

Fdz (C7 t) =

B. Relative feature specifications as described by the following four cases>0, k> 0):

Usually, the per-time-step min—max range of attribute ealu . [+p, +k] with 0<p<k is mapped td+p/k, +1]
varies over time — the meaning of what is relatively hot (at o . [_p’ +] with p2k>0 is mapped tq—p/k’ +1]
an instance of time) changes as the distribution of temperat 3. [_p’ +4] with p;k>0 is mapped tq—1 —f—’k/p]
values varies over time. Accordingly, we enable user access , . [_p’ — k] with p>k;0 is mapped tq—I’ —k/p|

to relative attribute measurdsrel;, which are computed with
respect to the per-time-step data range of the data atrib&igure 8 illustrates the two different versions of normaitian
d; at the time step, and thereby specify time-step-relativeand how they compare to each other. In the most left scatter-
features: plot, temperature derivatives are shown on the vertica esi

s o . time steps on the horizontal axis. Simple normalizatiorhef t

i(c,t) — min. d;(c,t) - e . : )
. (4) derivatives is presented in the middle whereas zero-priesgr

max, di(c,t) — mine di(c,t) normalization is shown in the right scatterplot.
An example is the investigation of relatively high temparat ~ With the help of this type of attribute derivatiorglative
changes by the use of derivatives estimation first andbaushingof certain data attributes can be realized very easily.
subsequent selection of relative extrema. After data normalization of a specific data attribute, a brus

drel;(c,t) =
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Fig. 9. Comparing feature specification relative to datangea (relative
brushing, a&b) with interest which varies over time (in@giing brushes,
c&d). The different scatterplots show: normalized velpoialues for each

time step (a&c) and original velocity values over time (b&@he time domain
is always on ther-axis, the data is the same as in figure 5.

to tu Time

Fig. 10. lllustrating different cases for the calculatiohstationary attribute
values. In (a) the attribute is not stationary, in (b) thelaite stays stationary
for 5+1+5=11 time steps, and in (c) the attribute staysastaty for 10+1+3
time steps (or possibly even longer while outside the sitrmriadomain).

can be specified in the normalized data range, always S&ectyy, the-axis, (a) and (c) show normalized velocity values on

the same relative data range per time step. Figure 8 shows hgw, _4yis (b and (d) original velocity values. In figure 9(a)
derivatives relatively close to zero have been brushedeén 1 1o |ative brush is specified, selecting relatively medhigh
right scatterplot, the other views are visually linked. velocity values. The resulting DOI distribution is visuadil

in (b) according to the original velocity values. In (c), a
C. Interest which varies over time time-varying interest has been specified, brushing reldtigh
Due to simulation processes which cover certain temponglues of velocities for the first temporal phase of the dtas
phases of the flow, users sometimes are interested in feati#ad then decreasingly lower relative values for the reshef t
whose specifications vary from phase to phase. The differeritne. The resulting DOI-definition with respect to the onigi
to feature specification relative to data changes is that aMelocity values is shown in figure 9(d).
the definition of the (relative) interest changes over time
and not only the data range of the attribute. Providing dh. Features based on stationary attributes
interpolation scheme for feature specifications, a coplsU |y conrast to the interest in changing phenomena, users are
change of feature specifications between selected key timgmetimes also interested in subsets of the flow, whereirerta
steps is realized. Interpolation between the DOI speciinat 4irihytes remain stationary (for a certain time and witain
for two different key time-stepsandt is enabled by extending certain tolerance). We attribute each data item (at eatarine
the DOI definition from equation 1 to of time) with the number of time stepsat_count; (equ. 6),
for which a certain data attributé;, remains stationary with
respect to a user-defined thresheld-eatures with respect to

®)  such stationary attributes are then easily defined.
WhereDO[j (dzv p) = DOIj(di7p07p17p27p3) and SStS u.

An example of an interest which varies over time is thestat_count;(d;(c,t),¢) = max. [{s...,ull]
definition of moving brushes in the spatial domain when u
working with datasegtas which are based (F))n time-varying grids Vreds,ouk dile,t)—e < dile,7) < dife, t)+e (6)
In this case, parts of the geometry are interpolated from keyigure 10 illustrates three different examples of how tHewa
geometry to key-geometry. With an interpolation scheme ftation of measures for stationary flow attributégat_count;)
brushes, spatially moving parts of the geometry can be keptperformed. In (a), the data value of cell lies in the
in focus for further feature refinement in the respectiveaare specifiede-neighborhood only for time stefy,. In this case,

To illustrate the difference between feature specificatiaftat_count;(d;(c;,t,),¢) is assigned the value of 1, which
relative to data ranges and an interest which varies oves,tinmeans that the data value is not stationary at all (but
a comparison is presented in figure 9. Data is shown frostays only for one time step in the specified data range).
the example of figure 5. In all four scatterplots time is show@ase (b) illustrates an example, where the data values of

t_
DOI—Vark(dia S, Ps, U, Pu) = DOI] (du Ps + u—_i : (Pu_Ps))



cell ¢, stay for a longer time within the specified data rangéemporal focus+context visualization

(here for 5 preceding and 5 succeeding time steps). Afmen dealing with unsteady datasets, usually all datdates
cordingly, stat_count; (di(cx, tu), €) is assigned to the value 5re provided for multiple time steps (usually for all of theifn
of 5+1+5=11. A special case of our calculation scheme & hre-selection is performed before the analysis). Whew-vi
shown in case (c). If the temporal boundary of the simpg the data, two straight-forward options are to eithervsho
ulation is reached (the first or the last time step) befofRe gata of all time steps simultaneously, or to interabtive
attribute values leave theneighborhood ofi;, then we tag geject one time step for visualization.
stat_count; (di(c;, 1), €) by representing it as a negative nUm- |, the Simvis system, the user can choose in each view from
ber. This way, we are able to separately treat all those cagg§ich specific time steps data items are visualized by adigist
where the stationary measure potentially is even largem thgyq sliders. Usually both sliders are bound to each other, so
actually computed. Here in case (e)at_count;(di(cj,tu):€)  that data from just one time step is shown. Alternatively, a
is assigned the value @10+1+3)- —1 = —14, accordingly. from_until span of time steps can be selected, enabling the
An example for interest in features which are based QRncurrent visualization of data from multiple (or all) #m
stationary attributes is the investigation of all thoseioeg steps. An example is shown in figure 5. In the 3D visualization
of a cooling jacket for a Diesel engine where a stationagy, the left side, only the data from time step 14 is selected fo

high temperature of the cooling fluid is given. rendering, whereas in the two scatterplots on the right, side
data from all time steps is shown.
E. Eeatures based on local extrema For better control of the time step selection we propose

. A a commonly used VCR-like interface. It enables the syn-
Often, it is of special interest where and when local extrem : T . . :
. chronized animation of all views in the system through si-
occur in a dataset, e.g., when temperature reaches a tdmpor

: . o . . : . lﬁtaneously updating the temporal focus. It allows to step
maximum in a specific location of the simulation grid. In suc . : . . T
) - -through the time steps interactively in both directionsiwfe,
cases, not only the maximal/minimal value of the respectche)

data attribute is of interest, but also the spatial locasisnvell animate t.hls process at a fixed step rate, anq to rewind
T and loop animation sequences. For the generation of short
as the point in time when the local extremum happens. Below, L . . . .
. repeated animation sequences of especially interesting ti
we describe how DOI values can be computed to represen : L 4 o
sSpans, all options for animations can be restricted to aifipec
local data extrema for each cell

time interval.
dmax;(c,t) = min(DOI;(6Td;(c,t), —€1, —€0, €0, €1), In addition to interactively cycling through time steps, we
DOI;(68Td;(c, t), —00, —00,%0,71)) @) also provide the integration of data from time steps out of

focus as temporal context in attribute visualization views
In this equationl'd;(c, t) represents smoothed data values a8 follow the focus+context visualization concept for this
defined by equation 3§ denotes differentiation wrt. time, purpose. All data items in focus from the selected time steps
and DOI;() represents a subset selection. The boundaaye shown in a prominent style (black points in scatterplots
representationg, and ¢; as well as~y, and ~; influence whereas the data items from the temporal context (not select
how sharply local maxima are specified with < v; < 0 time steps) is visually deemphasized (in grey-level styte)
ande; > ¢g > 0. The minimum operator is the traditional T-just provide an impression of the overall data distributibhis
norm which represents a logical AND-combination in fuzzyequires, however, that the user pays attention to the ffeatt t
logic. Equation 7 represents nothing else than the fact, tlhuring brushing in an attribute view, the brush action only
local maxima are found where®Jorder derivatives are zerois applied to the data items in focus, but not to the context.
(smoothly brushed) and'@order derivatives are negative (alsdrigure 11 shows an example, where only data from a small
smoothly brushed). time interval is in focus.

For calculating local minima, only the second argument In SimVis, all views can also display time values on all
of the min()-operator in equation 7 has to be replaced bgxes, similar to regular attribute values. Examples ineltiae
DOI;(66Td; (e, t), 71,70, 00, 00) With v > 1 > 0. mapping of time onto the axes of scatterplots (see figure 9) or

One example of interesting local maxima is again thile color-coding of time when jointly rendering multiplent
cooling jacket for a Diesel engine. Here it would be easy tieps in the 3D view.
find all those moments in time, when temperature values of
the cooling fluid are at a maximum (and above some ”mit)ScaIing the attribute visualization

In the visualization of time-dependent data, ranges of data
attributes usually vary between time steps. When visugjizi
All the above described feature types can be interactivedata from different time steps (or time intervals), this tmbe
specified in the attribute views of our system. If attributeonsidered. We provide different scaling options in eaewi
derivation is performed during analysis, the resultingnaetr local scalingto the data range of the currently visualized time
data attributes can be used in any of the linked views efep (or time interval)global scalingto the data range of all
our framework just as first-order data. In the following, wéime stepsscaling to a specific selectigfscaling to a brush),
describe how SimVis views were extended to cope with timenduser-defined scalingnteractive scaling) as illustrated by
dependent flow data. figure 11. Here velocitieszfaxis) vs. temperatureg/{axis)

IV. VISUALIZATION CHALLENGES
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Fig. 11. lllustration of three different types sfew scalingfor the data from figure 5 (velocity vs. temperature in alethiscatterplots): (a) scaling to show
all data (all time steps); (b) scaling to the data from a getbtime interval; (c) scaling to the previously brushedsigbn (brush from a).

of flow data from figure 5 are plotted in three scatterplot&xtensions to 3D rendering in SimVis

Figure 1la shows global scaling for the full time rangerpe rendering of data from single time steps in the 3D
figure 11b scales to the data ranges of a sele.cted time ihterr‘é'i‘ldering view in a step-through or animated mode is sttaigh
(time steps 48 to 52 out of 100 available time steps), afghward. In contrast, 3D rendering of data from a time ingrv
figure 11c shows the data distribution scaled to the brugh,a more complicated case. In feature-based rendering, the
shown in the first two examples. concurrent visualization of data from multiple time steps
allows to show the temporal evolution of features in one
single image. Another effect is, that by rendering a few time
steps simultaneously, outliers, i.e., parts of featureshvhre
Since SimVis utilizes a multi-view approach to focus+cante present only for a short time, are smoothed out and thereby
visualization, feature specification is possible in any lé t deemphasized.

attribute views. SimVis not only provides the opportunity t When rendering data from a time interval in the 3D visu-
specify multiple features in multiple views, but espegiallalization, all selected time steps are rendered into oné fina
supports the interactive specification of complex features image. We render the cells sorted (back to front) and for each
two or more views. Degree-of-interest values which stermfrocel| all time steps are rendered and composited. Each tiepe st
(smooth) brushes in one or more views can be AND-, ORwut ofn) is rendered using a reduced opagity= 1—/1—«,

and SUB-combined, based on fuzzy logic operations [6]. Kb that the overall opacity (for all time steps) stays the same,
the focus+context visualization, we differentiate fowdts:  whether only one time step is rendered or several. Figure 15

« most important (first-level focus) is the DOI attributiorshows a result of such a 3D rendering of several time steps.
which represents the complex feature itself (after logical
combinations). In the attribute views, shades of red are V. LARGE DATA HANDLING

used to represent data items in first-level focus.  patasets from CFD simulation usually are large or even huge.

« within each of the attribute views, all those data ittm$pe sjze of the data is influenced by the number of time steps,
which on the one hand are brushed but on the other hapd number of data attributes at each cell, and the number of
are not in first-level focus (due to the logical comblnatlogrid cells themselves. Dealing with very large datasetsngur
with other brushes) are consid_ered as second-level focyg,,alization and interaction is a challenging task, tfee
Shades of yellow are used to visually enhance the secoggimized data access policies are very important for aulisef
level focus. o _ visual analysis framework like SimVis.

« all data items from the time interval, which has been The datasets which we are currently analyzing with the
used as_the tempora_l support for the feature specificatiaf)vis system have about 100 time steps, 20-50 data at-
and which are not in first- or second-level focus, argjhutes and 100,000 to 1,000,000 cells. File sizes of such
considered as first-level context in the visualization anghiasets range from several hundred megabytes to a few
visualized in black. _ _ gigabytes. The main extensions to the SimVis system for

- all other data items, i.e., the data items outside thgnporting an efficient handling of large datasets are reedili
selected time interval, are considered as second-lelﬁ%ﬁ)ow_ Further details are discussed in a separate papgr [13
context for visualization and visualized in grey (or left pirst, we enabled lazy loadingétivating of data attributes.
out entirely). This is realized by implementing \dirtual Proxy pattern [12]

Concerning drawing order in the visualization, we note thai the data attribute classes. Due to the fact that it is very
first-level focus is drawn over second-level focus, and so oexpensive in terms of system resources to leave all data

Multi-level focus+context visualization



t = 12 secC. t = 30 sec. Obstacle

Flow direction

Fig. 12. Using a time-dependent flow feature, based on astat flow attribute (large amounts of water), to generatésaalization sequence which well
visualizes the impact of a flood (caused by a breaching dyk&) a nearby object.

attributes permanently activated, a caching algorithmethas No SSE SSE
on a LRU (least recently used) queue has been implemented
First-order data attributes, which can be re-read from the | Without HT 10.36ms 2.81ms

simulation output at any time, are not swapped out to a new
external file for later reuse as opposed to data resulting fro
attribute derivation. ] _ o _ _

In addition to the improved memory management, SimVIlgg' 13. Comparing DOI calculation times for different cautgttional setups.
also has been optimized with respect to computational perfo

mance. The original version of SimVis was S'ngIe'threadeﬁyperthreading (by using different threads for calcutaprrts

resulting in a blocking behaviour in certain cases — oriljyna of the combinations, for example), no further speed-up can
about 90% of the computing time was used for the calculatign ' pie), P P

of DOI values and mouse interaction continuously triggexed. € achieved. Compared to using only SSE extensions, the

. . 227" ""increased cache miss numbers due to using different threads
recomputation of the DOI values. Our solution to maintain an g

. . . . . even slow down computations significantly in most cases. We
interactive response of the user interface (without blogki b 9 y

and thus to enable interactive changes of feature speaificat E)hnef[ﬁfeorsescl)zptelr;lezﬁg(;t:g calulation of the DOI function thse
was to decouple the DOI computation from the user interface '
by using two threads. The DOI computation thread notifies The SimVis system currently runs interactively on a stan-
the registered views after finishing the computation to t@dajard PC (Intel Pentium4, 2.8GHz, 2GB of memory) with a
the viewing information accordingly. DOI computation timeNVidia GeForceFX 5900 graphics card for datasets of up to
is additionally reduced by only recalculating parts of th®ID 10 million data items (cells*time steps), and 50 to 100 data
hierarchy, which are affected by user interactions. attributes for each data item.
) ) ) For the implementation of SimVis, a Java/C++ hybrid

To further speed up computationally intensive processes, Wyproach was chosen. The Ul interaction and the handling of
also investigated two hardware-dependent features: the feature specification have been realized in Java, wherea

Intel Pentium IV processors support the powerful SSfesh access and the rendering of the visualization views is
instruction set (Streaming SIMD Extensions [10]) which cajinplemented in native code. Native methods are called via
perform calculations on four 32 bit float values simultar&au the JNI APL. The mesh access has been realized by using
It is possible to optimize the calculation of the DOI funetio 3 proprietary data mesh format. Data coming from different

based on this extension, since it packs 4 operations into Oggta sources can be easily converted to this format viadinke
On the other hand, the Pentium IV also suppbstperthread- (eaders.

ing technology (HT) [1] which offers thread-level parallelism
enabling multi-threaded applications to make better use of
CPU resources as compared to single-threaded applications

We tested both solutions for their suitability in the spécidn the following, we briefly sketch two examples of inter-
case of calculating combinations of data coming from déffeér active visual flow analysis, using our time-dependent fieatu
large float arrays (as it is the case for the performancgpecification setup. Further results, as well as a shortoyide
critical parts of the DOI calculation). As a benchmark weemonstrating the interactive behaviour of the framework
used the following case: the minimum T-norm (logical ANDand the process of how to specify complex, time-dependent
of arbitrary DOI values from two arrays with 50,000 entriefeatures, are available on the project home page [18]. Aaipth
each is calculated (similar to the combination of brushes @also more detailed application description is availableain
SimVis [6]). Figure 13 gives averaged results for multiplease study report on the interactive visual analysis of adie
tests with the different setups (with and without SSE, witbxhaust system [9]. In this case study, a subset of the time-
and without hyperthreading). Using (only) the SSE insiarct dependent features which are discussed in this paper glread
set gives the maximum speed-up for our case. When addimgved to be very useful in a real-world analysis.

With HT 8.45ms 5.08ms

VI. APPLICATION EXAMPLES
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A. Flood after the burst of a dam

The first example demonstrates the investigation of a CH
simulation of the burst of a dam and the resulting floodi
of the surrounding area. The dataset, which can be see
figures 1 and 12, is made up of a grid of 76,505 cells, exhib
28 attribute dimensions, and is organized in 48 time steps.

flood is simulated as a two-phase flow, comprised of water

and air. The interesting region in this simulation is theisag Fig. 14. Showing large amounts of water in the flood simutatiata (dyke
Rrgeach) by the use of volume rendering.

around an obstacle which is located closely to the bursti
dam (on the right side in figure 14). In figure 12, a time
dependent feature has been specified to investigate how
the flood actually impacts this object. Also the height-lefe §
the impact in different phases of the simulation can be tlealg
seen from this visualization.

The feature has been specified by smoothly brushing val
of high cell fraction of water (high in cells where water i§he
specification has then been refined by restricting the setectrig. 15 Joint 3D rendering of all temperature data for al Tne steps,
to represent only cells which stay at a high level of watel célighlighting high velocities. More opaque data subsetsespond to areas
fraction longer than just a few time steps (using the statipn which remain in focus, i.e., which exhibit larger velocitjdor a longer time.
attribute derivation of water cell fraction). The lattesnéction
eliminates all cells, where just for one or two time stepfi #=i [ =1 oR
transient flooding occurs, i.e., we focus only on those pa
which are seriously affected by the flood. The features ingoc
are colored according to the water cell fraction valuedpyel
denoting medium cell fractions (partly mixed with air) aredir
showing regions of water only. The temporal evolution irsth
figure is from upper left to lower right image.

What can be clearly seen is the recirculation zone in fro
of the obstacle. It is also interesting that the simulatiaids
a long-term high level of flooding. For details on the setup (
the feature and an animation of the resulting feature, plea
refer to the accompanying video [18].

SimVis also has been connected to RTVR [22], whic
provides real-time volume rendering of 3D data — volu
rendering means that a semi-transparent 3D data contin
is considered, which is rendered back-to-front throughrgela
number of successive blending steps, eventually gengratin
impression of a semi-transparent data medium. So we are 4
able to visualize features as specified with our framewothk wi
high-speed, real-time volume rendering [16]. As the RTV
allows only rendering of regular grids, the exchange of da
between SimVis and RTVR works via on-demand hardwar|
software balanced resampling of the DOI values into a regu
grid, based on an algorithm by Weiler and Ertl [33].

Figure 14 shows an RTVR volume rendering of a featufég. 16. Time steps 16, 36, and 60 of the extended T-junctiataset,
describing areas of high water cell fraction at time 38s. Showing the same feature as in figure 15, but time step by te s
The boundary surface of the dataset is rendered as a set of

contour lines which reduces visual clutter due to occlusion o ) ) ) ) ]
3D rendering. B. Mixing time-shifted flows in an extended T-junction

t= 36 sec.

In figure 1 another time-dependent feature is visualizédgure 16 shows a second application example, namely an
for three different time steps of this dataset (12, 20, and 4&tended T-junction, consisting of two inlets (one on a lowe
seconds after simulation start). This feature shows thel lodevel, right side, the other on a higher level, front) and one
maxima (red) and minima (green) for regions with significardutlet (left side, upper level). Near the front inlet, an talote
volume fraction of water. As can be clearly seen, flow fronis blocking the flow. This dataset consists of 30,930 cells on
are usually preceded/succeeded by alternating minimanaax an unstructured grid, each cell having 18 data attributes. T
of volume fraction values, respectively. temporal domain spans 100 equidistant time steps.
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t=4.1sec.

Fig. 17. The regions around two different flow fronts are ctelé by specifying a single time-dependent feature usisty find second-order derivatives of
temperature values (see text for details).

The dataset has two time-shifted inflows from the two inletsjation data, especially focussing on the demanddiroé-
one starting at time step 0 from the right inlet, injectingmma dependent CFD dataExtensions to the feature specification
fluid into the T-junction, the other one from the front inletprocess (for the definition of time-dependent features) are
starting at time step 33, injecting hot flow. The two flows mixealized throughattribute derivationand extended brushing
in the chamber around the obstacle. mechanisms. For the feature-based focus+context visualiz
Figure 15 shows a 3D rendering of temperature values fiion, extensions with respect to the visualization of time-
the data of all 100 time steps of the dataset. The visualizddpendent flow data are presented. Performance improvement
feature is specified by high velocity values smoothly brdshéo the SimVis system, which became necessary to handle large
for the middle part of the dataset (right inlet and left outledatasets, are described.

have been neglected). The image shows, which parts are ijven a set of flexible tools for the interactive visual explo
focus and for how long (the more opaque, the longer in focugjtion and analysis of large simulation datasets, the usiesg
The color codes global temperature values over the wh@igproved insight into CFD data. Attribute derivation, asane
data, with red coding high values and green showing loi§ enable effective access to information which inherently
temperature (|n|t|a.| temperature in the whole dataset). is dependent on time’ as well as the Support of data_range_
When comparing this visualization to the three renderingsdependent, relative data assessment are new tools which
of the data from single time steps in figure 16, the followingupport the specification of time-dependent flow features in
difference can be observed: the 3D rendering of data fromiﬁ\e—dependent datasets.
longer time interval gives a general overview, which region Using focus+context visualization proves to be espe-

are in focus for longer periods of time. It smoothes out regio cially suitable for the intuitive visualization of large, ulti-

belng_ n short-term focus, l'.ke the green, low t_em_peratu imensional, and multi-variate datasets from unsteady CFD
area in the upper image of time step 16 shown in figure

Fi 16 sh i ‘ 16. 36 d 60 using th mulations. We extended conventional 3D rendering of data
\gure SNows time Steps 16, 36, an using the Saim singular time steps, by enabling a 3D visualization

feature specification as in figure 15. of data from longer time intervals containing multiple time

Another tlme-d_ependent feature is presented '”_f'g!”e ]s%eps to show temporal evolution of time-dependent feature
It represents regions, where the temperature derivatives g o .- orictics in a single image

high and the rate of change of derivatives (second-order . : o
differentiation) is either very high, or very low. This shew We are currently working on_the extension of the S|mV|_s
regions, where temperature changes very much, but the eha tem tc_> handle data;ets Wh'Ch are based on tlme—varylng
itself is only short-term. This corresponds to the front angi_'ds during the analysis of tme-dependent 5|mu_lat|oradat
backside of the flow fronts. By color coding according t(l):'rSt results have a_lready b_een achieved (see f|gur_e 18 for
the change of derivatives, the distinction between pasitid" example of a visualization of data from four different

and negative changes of derivatives becomes visible in © steps from the S|m_ulat|0n of parts of thg _combustlon
3D view. At time steps 0.4s and 0.6s after the start of tfamper of a Diesel engine [8]). Future work will include the
simulation, the first flow front shows up, whereas at tim&xtension of the here presented attribute derivation nakstfar

steps 3.3s through 4.1s the second flow front is visualizéiﬁeﬁifying tin;eo—ldepebnderét featl_Jres to cope V\.’gh thﬁ specia
Note, that this is captured by the specification of one featufd €NYES O ata based on time-varying grias. T € usage
(not temporally or spatially connected), although the tvaofl of position-based methods for feature extraction will hawe

fronts represented by this feature exhibit different terapee be included, as opposed to ce_II—based methods. An example
ranges. would be to calculate derivatives for absolute or relative

spatial positions rather than cell-based temporal deviesit
Future work will also deal with the inclusion of explicit
feature representations of specified features. This walbén

In this paper, we presented recent extensions to our Sim¢smparisons of different feature specifications, and weethe
framework for the interactive visual analysis of CFD simalso plan to establish a link to previous feature extraetion

VII. CONCLUSIONS ANDFUTURE WORK
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Fig. 18.
application is shown for four different time steps side byesi

based methods. [14]
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