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Interactive Focus+Context Analysis of Large,
Time-Dependent Flow Simulation Data

Helmut Doleisch, Helwig Hauser, Martin Gasser, Robert Kosara

Abstract— Visualization of time-dependent simulation data,
such as datasets from CFD simulation, still is a very challenging
task. In this paper, we present a new approach to the interactive
visual analysis of flow simulation data which is especially targeted
at the analysis of time-dependent data. It supports the flexible
specification and visualization of flow features in an interactive
setup of multiple linked views. Special emphasis is put on
new mechanisms to capturetime-dependent features, i.e., flow
features which are inherently dependent on time. We proposethe
integration of attribute derivation into the process of interactive
visual analysis to enable the subsequent user access to otherwise
implicit properties of the unsteady data in our interactive feature
specification framework. All views of this flow analysis setup are
linked in the sense that the features in focus are consistently
emphasized in the visualization (more colorful, less transparent)
whereas the rest of the data is only shown as context in reduced
style. In addition to introducing our new approach, we also
demonstrate its use in the context of several application examples.

Index Terms— interactive feature specification, time-
dependent features, focus+context visualization, time-dependent
flow visualization, multi-dimensional data visualization.

I. I NTRODUCTION

T HESE days, many researchers and practitioners again
focus on the visual analysis of results from computational

flow simulation, since it eventually has become possible to
investigate realistic flow scenarios in three spatial dimensions,
which vary over time, and which are represented as large and
multi-variate datasets, comprised of dozens of attribute dimen-
sions per location in space and time. It is a special perceptual
challenge to effectively convey multi-dimensional and multi-
variate data with visualization. Feature-based approaches [26]
are attractive because they allow to focus on specific subsets of
the flow (features), while setting aside the rest of the data, and
to thereby enable a targeted and detailed analysis of the flow
data. In figure 1, for example, the effects of a flood (caused
by a breaching dyke) are analyzed in the vicinity of a nearby
object by visually focussing onto the temporal changes of the
water level as the time-dependent feature in this case.

In the following, we discuss different approaches to feature-
based flow visualization and address related work, before we
propose our new approach and discuss our interactive feature
specification framework.
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Robert Kosara’s new affiliation is the University of North Carolina at
Charlotte, NC, USA,www.uncc.edu; the authors can be contacted via
{Doleisch,Gasser,Kosara,Hauser}@VRVis.at

Fig. 1. The effect of a flood, resulting from the burst of a dam (on the right),
is visualized in a feature-based 3D visualization. Grid locations which exhibit
a temporal maximum (red) or minimum (green) wrt. the percentage of water
in the cell have been specified as the flow feature in focus.

A. Approaches to feature-based flow visualization

Gaining thorough insight into flow simulation data is indeed
very challenging. One reason for this is that not all of the
interesting information in the data also is explicitly represented
in the form of first-order data attributes in the files. Flow vor-
tices, for example, usually are not directly accessible through
explicit data attributes, but implicitly represented in the data.
Taking this consideration a step further, we can think of the
information content of such a flow simulation dataset as being
given in a layered feature space, where deep layers stand for
complex (and implicit) relations in the data, e.g., a vortexor
a shock wave, and where shallow layers correspond to data
properties which are explicitly represented in the form of first-
order data attributes (such as temperature values). Figure2
illustrates this layered feature space with the first-orderdata
attributes forming the upper most layer and the more complex
flow features being considered as the “deep treasures” in the
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Fig. 2. The layered feature space: attribute derivation andextended brushing
form a hybrid, feature-based visualization approach.

layered feature space.
Feature-based flow visualization requires that the user has

access to data properties, either in the form of first-order data
attributes or from deeper layers in the layered feature space.
A very effective solution for this feature access is to support
interactive brushing [32] of data attributes – brushing means
that the user can interactively mark up the interesting parts of
the data by interactively “brushing” their visual representation
in the visualization view. Given a scatterplot, for example, with
temperature values relating to they-coordinates of all points,
a user could interactively select the hot subsets of the dataas
the current feature of interest by just drawing a rectangular
brush over the upper parts of this scatterplot. In according
visualization systems, a set of advanced interaction techniques
is available to ease the interactive brushing of first-orderdata
attributes (see related work section).

Additionally, there also are advanced approaches to extract
the “deep treasures” from the layered feature space, i.e., to
access and visualize also complex relations within the data.
Usually, sophisticated computations are used to extract those
parts of the data which correspond to the respective flow
features. Special challenges include the extraction of non-
local relations, computationally expensive extraction methods,
and numerically unstable feature specifications. Often, feature
extraction techniques also pose non-negligible challenges for
the user to fully comprehend what the feature extraction
process actually is doing (and which result it actually delivers).
In many cases, the extracted flow features are explicitly
represented in the visualization, for example, by the means
of boundary surfaces or glyphs. Often, the rest of the data
is not shown at all, yielding significant compression rates of
several orders of magnitude [26], but additionally stressing the
challenges of comprehension.

In this paper, we propose a new and hybrid approach to the
feature-based visualization of simulation data which allows to
utilize the advantages of interactive brushing as well as those
of feature extraction.

On the one hand, we “lift up” implicit data properties

Fig. 3. Scheme for the interactive specification and visualization of
time-dependent flow features: interplay ofattribute derivation, interactive
brushing, and iterative refinementin the context of the multi-variate flow
data representation.

from the deep levels in the layered feature space byattribute
derivation. For every data itemci, we compute (on demand)
additional, synthetic data attributes (2nd- or nth-order data
attributes) as mathematical combinations of other, already
given or previously computed data attributes as illustrated in
figure 3. This happens, for example, through the application
of specific filters or by the use of formulas which describe the
physical/chemical relations of interest within the flow data.

On the other hand, we provide the user withadvanced
brushing mechanismsso that the flow features can be easily
grasped, even from lower levels in the layered feature space,
and taken further to expressive focus+context visualization.
Logical combinations of selections (brushes), which are for-
mulated with respect to1st-, 2nd-, or nth-order data attributes,
can be used to access also fairly complex relations (features)
as compared to traditional, simple brushing.

One advantage of our approach is that users can easily
understand how the feature-based visualization is constructed
and how the results are to be interpreted. To analyze the
effectiveness of a cooling jacket, for example, a user would
first use attribute derivation to represent local temperature
maxima in the form of a new synthetic data attribute, and
then select all those data subsets for subsequent visual analysis
which exhibit both high temperature maxima and low flow
velocities in the same places (locations of insufficient cooling).

This approach provides a large amount of flexibility during
feature specification, supports the comprehension of the fea-
ture extraction process, and is well-aligned with focus+context
visualization, where features are visually emphasized as com-
pared to the rest of the data, which only is provided as context
in reduced style for improved orientation and navigation.
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B. Related work

In the field of flow visualization, many different approaches
have been proposed up to now, especially for 2D flows and for
steady flows. A detailed overview about different visualization
methods and feature extraction techniques is available in an
overview paper by Post et al. [25].

For the visualization of3D unsteady flows, also several
approaches have been presented. One way to visualize un-
steady flow data is the use of (moving) isosurfaces or arrows
on boundary surfaces as presented by Treinish in a visual-
ization of unsteady weather data [31]. Another approach is
to use volume visualization. Swan et al. apply direct volume
rendering techniques to flow visualization in a system which
supports computational steering [30]. Clyde and Dennis [5]as
well as Lum et al. [21] present volume rendering for time-
varying vector fields using algorithms which make special use
of graphics hardware to accelerate the rendering process.

In contrast to direct volume rendering, feature-based ap-
proaches profit from an early reduction of the data (ahead
of visualization) so that not all of the data is visualized
concurrently in full detail. For feature-based visualization,
proper feature extraction is essential. Depending on the actual
application, flow features typically include vortices, shock
waves, separation and attachment structures, recirculation
zones, etc. [26]. Many different approaches to feature extrac-
tion have been proposed. For the detection of regions of high
vorticity or vortex core lines, Kenwright and Haimes [19],
Bauer et al. [4], and Roth and Peikert [23][28] proposed ad-
vanced approaches. Additionally, many other feature extraction
methods have been presented – due to space limitations we
provide a more thorough review in another paper [26].

In our case, an additional challenge is to include the tem-
poral dimension into the feature specification process. Most
feature extraction techniques for unsteady data extract features
in individual time steps [27][29]. Usually, feature tracking is
then used to match the features of successive time steps and
thereby reconstruct a notion of time-dependent features.

Up to now, only little work has been done on interactive
feature specification. Henze developed a technique to visually
analyze time-varying data from CFD simulation (computa-
tional fluid dynamics) by using multiple, linked portraits (2D
plots, also showing the grid connectivity of the data) in
a system called Linked Derived Spaces [17]. The system
supports a basic brushing and linking functionality and is
designed for exploratory visualization and feature detection
in multivariate data. Gresh et al. presented a system called
WEAVE [14], which combines the visualization of simulation
data with a 3D visualization of the simulated structure and
which allows for structural investigation of complex simulation
data in the 3D context, based on marking data items according
to different data attributes. Inspired by this work, we developed
a framework for interactive feature specification for CFD data
in previous work [7][6], called SimVis [2] (see also sectionII).

In the following, we first briefly describe our feature-based
flow analysis framework in general before we detail on our
new approach to time-dependent flow features. Additionally,
we also describe some recent extensions to the focus+context
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Fig. 4. A 1D smooth brush results in a trapezoidal DOI function according
to equation 1.

visualization as well as performance improvements, which
have become necessary to handle large datasets. Finally, we
demonstrate our approach in the context of two applications.

II. T HE SIM V IS SYSTEM

To achieve feature-based flow visualization for data explo-
ration and analysis, we provide 3D flow visualization together
with different kinds of attribute views. Advanced interaction
mechanisms enable the user to intuitively specify featuresin
the flow data. Multiple, linked views (compare to Baldon-
ado [3]) are used to concurrently show different aspects of the
flow data. In the visualization, the flow features are visually
discriminated from the rest of the data in a focus+context
visualization style which is consistent in all views [15].

For interactive feature specification, attribute visualization
views such as scatterplots [24], histograms [20], etc., areused.
The user chooses to visually represent selected data attributes
in such a view, thereby gaining insight into the selected
relations within the data. Then the interesting subsets of the
data are interactively brushed directly on the screen (compare
to the XmdvTool [32], and see figures 5c and 5d). The result
of such a brushing operation, i.e., a notion of user interest,
is reintegrated within the data in the form of a synthetic data
attributeDOI j ∈ [0, 1] (degree of interest (DOI) attribution
of the data, compare to Furnas [11]).

The SimVis system supportssmooth brushing[7] (to enable
fractional DOI-values) as well as the logical combination of
brushes for the specification ofcomplex features[6]. A smooth
brush results in a trapezoidal DOI function as defined below
and illustrated in figure 4.

DOI j(di, p0, p1, p2, p3) =























0 if di≤p0

di − p0

p1 − p0

if p0 <di≤p1

1 if p1 <di≤p2

p3 − di

p3 − p2

if p2 <di≤p3

0 if di >p3

(1)

In SimVis, DOI attributes and their compositions are explicitly
represented in the system [6] and can be interactively adjusted
through a separate graphical user interface to achieve compar-
isons – DOI attributes can be saved and reapplied to other
datasets (see figure 5a).

For feature-based flow visualization, SimVis provides 3D
focus+context visualization of the flow data in the sense that
flow features are visually emphasized in the 3D depiction
through coloring and reduced transparency [15]. For each
3D view, one (fractional) DOI attributeDOI j is used to
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Fig. 5. Typical setup of a working session with the interactive feature specification framework: a tree viewer is used to manage the feature specification (a);
a 3D visualization view, used to visualize the spatial structure of data using a focus+context visualization approach (b); two scatterplots, showing interactively
brushed and refined feature specification parts (c&d).

(smoothly) discriminate the visually enhanced focus from the
rather transparent and grey-scale context (see figure 5b).

From the collaboration with our industrial partners we know
that interactive exploration and analysis of simulation data of-
ten follows one of three characteristic interaction patterns. One
type of exploration is to search for places in the 3D simulation
grid where certain feature characteristics are present (feature
localization). In the SimVis system, the user can brush features
in attribute views and concurrently localize the respective
feature in the 4D (3D+time) flow domain.

Additionally, users also investigate multi-variate data prop-
erties by specifying a feature in an attribute view and at the
same time analyzing the DOI distribution with respect to other
data attributes in other attribute views (through view linking,
here calledmulti-variate analysis). This sort of analysis also
is inherently supported by the SimVis system.

Finally, users also often inspect the values of selected data
attributes with respect to certain spatiotemporal subsetsof the
flow domain (local investigation). In the SimVis system, the
user can also load spatial as well as temporal data references
into attribute views – brushing these kinds of data attributes
then yields features which are specified according to their
spatiotemporal extents.

III. I NTERACTIVE SPECIFICATION OFTIME-DEPENDENT

FEATURES

When analyzing datasets from unsteady CFD simulations,
interactive visualization is very useful. Flexibility with respect
to feature specification also is of great utility for the user. For
time-dependent data it is necessary to support the specification
of features which are inherently based on time. In the follow-
ing, we call features which cannot be extracted from singular
time steps of unsteady CFD data,time-dependent features.

As a result from an informal user study with application
engineers we identified five types of important time-dependent

features. In the following subsections we discuss these feature
types one by one. In the SimVis system, attribute derivation
is issued through the use of a separate interface – the user
chooses which data attribute to derive from, the type of deriva-
tion, and adjusts derivation parameters. For the subsequent
visual analysis through interactive brushing, all data attributes
(1st- as well asnth-order) are equally available.

A. Features based on attribute derivatives

Often, users are interested in changes of data attributesdi with
respect to time. So we provide the user with access to attribute
derivatives (d′i(c, t) = d di(c, t) / d t). Due to the discrete
representation of time in the form of time steps, differential
information is approximated, usually in one of three typical
forms: forward, backward, or central differences. In the SimVis
system, central differences are used as a useful compromise
between data smoothing and frequency amplification (side-
effect of data derivation) according to the following formula.

δ di(c, tk)=
di(c, tk+1)−di(c, tk)

2(tk+1−tk)
+

di(c, tk)−di(c, tk−1)

2(tk−tk−1)
(2)

With this type of derivatives estimation we compensate for
cases of unevenly spaced time steps in the simulation.

Derivatives are used to detect patterns of changes. One
example is a search for large temperature changes when
investigating the burning front in a combustion chamber.

Iterative attribute derivation also is an important func-
tionality of our approach. Applying derivatives estimation
repeatedly, for example, results in second-order (or higher-
order) differences. Figure 6 gives an example of how attribute
derivatives of different orders are used for feature specification.
In a 3*2D+1*3D scatterplots view, the simulation time (red
axis), normalized first-order derivatives of temperatures(green
axis), and second-order derivatives of temperatures (blueaxis)
are plotted against each other for the flow dataset from figure5.
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Fig. 6. Specifying a feature in a 3*2D+1*3D scatterplots view: normalized
1st-order derivatives (green axis) and 2nd-order derivatives (blue) of tempera-
ture values are plotted over time. Higher values of both derivatives are brushed
in the upper right scatterplot. For a related 3D visualization see figure 7.

A complex brush is used to investigate flow regions in front
and behind a moving hot inflow front (see figure 7).

Another case of iterative attribute derivation is to first filter
the data (with respect to time) in a step prior to attribute
derivation. As one often demanded operation, we provide
smoothing of the data according to

Γdi(c, t) =

∑

t−w≤τj≤t+w di(c, τj)· G((t−τj)· 4/w)
∑

t−w≤τj≤t+w G((t−τj)· 4/w)
(3)

with t denoting the time of the current data item of interest. As
a filter a Gaussian lobe withσ=1 is used from[−4, 4], scaled
to time-interval[−w, w]. For other purposes, of course,G()
also can be exchanged with any other filter kernel as needed.

B. Relative feature specifications

Usually, the per-time-step min–max range of attribute values
varies over time – the meaning of what is relatively hot (at
an instance of time) changes as the distribution of temperature
values varies over time. Accordingly, we enable user access
to relative attribute measuresd reli, which are computed with
respect to the per-time-step data range of the data attribute
di at the time stept, and thereby specify time-step-relative
features:

d reli(c, t) =
di(c, t) − minc di(c, t)

maxc di(c, t) − minc di(c, t)
(4)

An example is the investigation of relatively high temperature
changes by the use of derivatives estimation first and a
subsequent selection of relative extrema.

Fig. 7. Areas in front and behind of a hot inflow front in the dataset of fig. 5,
visualized over time. The related feature specification is shown in fig. 6.

Fig. 8. Comparison of derivatives (left), simple normalized derivatives (mid-
dle) and zero-preserving normalized derivatives (right).The data shown are
temperature derivatives in the extended T-junction example from section VI.

For the specification of features relative to data changes,
local data normalization with respect to time is necessary.In
SimVis, data normalization can be applied to any data attribute
available during investigation. Two conceptually different ver-
sions are available: the local data range of each time step can
be simply mapped to the unit-interval as shown in equation 4.
Alternatively, normalization can be done to the[−1, 1] interval
such that zeros in the input data also map to zeros in the output
as described by the following four cases (p≥0, k≥0):

1 : [+p, +k] with 0≤p<k is mapped to[+p/k, +1]
2 : [−p, +k] with p≤k>0 is mapped to[−p/k, +1]
3 : [−p, +k] with p>k≥0 is mapped to[−1, +k/p]
4 : [−p,−k] with p>k>0 is mapped to[−1,−k/p]

Figure 8 illustrates the two different versions of normalization
and how they compare to each other. In the most left scatter-
plot, temperature derivatives are shown on the vertical axis vs.
time steps on the horizontal axis. Simple normalization of the
derivatives is presented in the middle whereas zero-preserving
normalization is shown in the right scatterplot.

With the help of this type of attribute derivation,relative
brushingof certain data attributes can be realized very easily.
After data normalization of a specific data attribute, a brush
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Fig. 9. Comparing feature specification relative to data changes (relative
brushing, a&b) with interest which varies over time (interpolating brushes,
c&d). The different scatterplots show: normalized velocity values for each
time step (a&c) and original velocity values over time (b&d). The time domain
is always on thex-axis, the data is the same as in figure 5.

can be specified in the normalized data range, always selecting
the same relative data range per time step. Figure 8 shows how
derivatives relatively close to zero have been brushed in the
right scatterplot, the other views are visually linked.

C. Interest which varies over time

Due to simulation processes which cover certain temporal
phases of the flow, users sometimes are interested in features
whose specifications vary from phase to phase. The difference
to feature specification relative to data changes is that also
the definition of the (relative) interest changes over time
and not only the data range of the attribute. Providing an
interpolation scheme for feature specifications, a continuous
change of feature specifications between selected key time-
steps is realized. Interpolation between the DOI specifications
for two different key time-stepss andt is enabled by extending
the DOI definition from equation 1 to

DOI vark(di, s,ps, u,pu) = DOI j(di,ps +
t−s

u−s
· (pu−ps))

(5)
whereDOI j(di,p)=DOI j(di, p0, p1, p2, p3) ands≤ t≤u.

An example of an interest which varies over time is the
definition of moving brushes in the spatial domain when
working with datasets which are based on time-varying grids.
In this case, parts of the geometry are interpolated from key-
geometry to key-geometry. With an interpolation scheme for
brushes, spatially moving parts of the geometry can be kept
in focus for further feature refinement in the respective areas.

To illustrate the difference between feature specification
relative to data ranges and an interest which varies over time,
a comparison is presented in figure 9. Data is shown from
the example of figure 5. In all four scatterplots time is shown

Time
t0

di(cj, tu)

di(cj, tu) - ε 

di(cj, tu) + ε 

di(ck, tu)

di(ck, tu) - ε 

di(ck, tu) + ε 

di(cl, tu)

di(cl, tu) - ε

di(cl, tu) + ε 

tu

(a)

(b)

(c)

?

Fig. 10. Illustrating different cases for the calculation of stationary attribute
values. In (a) the attribute is not stationary, in (b) the attribute stays stationary
for 5+1+5=11 time steps, and in (c) the attribute stays stationary for 10+1+3
time steps (or possibly even longer while outside the simulation domain).

on thex-axis, (a) and (c) show normalized velocity values on
the y-axis, (b) and (d) original velocity values. In figure 9(a)
a relative brush is specified, selecting relatively medium-high
velocity values. The resulting DOI distribution is visualized
in (b) according to the original velocity values. In (c), a
time-varying interest has been specified, brushing relative high
values of velocities for the first temporal phase of the dataset,
and then decreasingly lower relative values for the rest of the
time. The resulting DOI-definition with respect to the original
velocity values is shown in figure 9(d).

D. Features based on stationary attributes

In contrast to the interest in changing phenomena, users are
sometimes also interested in subsets of the flow, where certain
attributes remain stationary (for a certain time and withina
certain tolerance). We attribute each data item (at each instance
of time) with the number of time stepsstat countj (equ. 6),
for which a certain data attributedi remains stationary with
respect to a user-defined thresholdε. Features with respect to
such stationary attributes are then easily defined.

stat countj(di(c, t), ε) = max
s≤t≤u

‖
{

s, . . . , u }‖
∣

∣

∀τ ∈{s, . . . , u} : di(c, t)−ε ≤ di(c, τ) ≤ di(c, t)+ε (6)

Figure 10 illustrates three different examples of how the calcu-
lation of measures for stationary flow attributes(stat countj)
is performed. In (a), the data value of cellcl lies in the
specifiedε-neighborhood only for time steptu. In this case,
stat countj(di(cl, tu), ε) is assigned the value of 1, which
means that the data value is not stationary at all (but
stays only for one time step in the specified data range).
Case (b) illustrates an example, where the data values of
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cell ck stay for a longer time within the specified data range
(here for 5 preceding and 5 succeeding time steps). Ac-
cordingly, stat countj(di(ck, tu), ε) is assigned to the value
of 5+1+5=11. A special case of our calculation scheme is
shown in case (c). If the temporal boundary of the sim-
ulation is reached (the first or the last time step) before
attribute values leave theε-neighborhood ofdi, then we tag
stat countj(di(cj , tu), ε) by representing it as a negative num-
ber. This way, we are able to separately treat all those cases
where the stationary measure potentially is even larger than
actually computed. Here in case (c),stat countj(di(cj , tu), ε)
is assigned the value of(10+1+3) · −1 = −14, accordingly.

An example for interest in features which are based on
stationary attributes is the investigation of all those regions
of a cooling jacket for a Diesel engine where a stationary
high temperature of the cooling fluid is given.

E. Features based on local extrema

Often, it is of special interest where and when local extrema
occur in a dataset, e.g., when temperature reaches a temporal
maximum in a specific location of the simulation grid. In such
cases, not only the maximal/minimal value of the respective
data attribute is of interest, but also the spatial locationas well
as the point in time when the local extremum happens. Below,
we describe how DOI values can be computed to represent
local data extrema for each cellc.

d lmaxi(c, t) = min(DOI j(δΓdi(c, t),−ε1,−ε0, ε0, ε1),

DOI j(δδΓdi(c, t),−∞,−∞, γ0, γ1)) (7)

In this equationΓdi(c, t) represents smoothed data values as
defined by equation 3,δ denotes differentiation wrt. time,
and DOI j() represents a subset selection. The boundary
representationsε0 and ε1 as well asγ0 and γ1 influence
how sharply local maxima are specified withγ0 < γ1 ≤ 0
and ε1 > ε0 ≥ 0. The minimum operator is the traditional T-
norm which represents a logical AND-combination in fuzzy
logic. Equation 7 represents nothing else than the fact, that
local maxima are found where 1st-order derivatives are zero
(smoothly brushed) and 2nd-order derivatives are negative (also
smoothly brushed).

For calculating local minima, only the second argument
of the min()-operator in equation 7 has to be replaced by
DOIj(δδΓdi(c, t), γ1, γ0,∞,∞) with γ0 > γ1 ≥ 0.

One example of interesting local maxima is again the
cooling jacket for a Diesel engine. Here it would be easy to
find all those moments in time, when temperature values of
the cooling fluid are at a maximum (and above some limit).

IV. V ISUALIZATION CHALLENGES

All the above described feature types can be interactively
specified in the attribute views of our system. If attribute
derivation is performed during analysis, the resulting derived
data attributes can be used in any of the linked views of
our framework just as first-order data. In the following, we
describe how SimVis views were extended to cope with time-
dependent flow data.

Temporal focus+context visualization

When dealing with unsteady datasets, usually all data attributes
are provided for multiple time steps (usually for all of them, if
no pre-selection is performed before the analysis). When view-
ing the data, two straight-forward options are to either show
the data of all time steps simultaneously, or to interactively
select one time step for visualization.

In the SimVis system, the user can choose in each view from
which specific time steps data items are visualized by adjusting
two sliders. Usually both sliders are bound to each other, so
that data from just one time step is shown. Alternatively, a
from–until span of time steps can be selected, enabling the
concurrent visualization of data from multiple (or all) time
steps. An example is shown in figure 5. In the 3D visualization
on the left side, only the data from time step 14 is selected for
rendering, whereas in the two scatterplots on the right side,
data from all time steps is shown.

For better control of the time step selection we propose
a commonly used VCR-like interface. It enables the syn-
chronized animation of all views in the system through si-
multaneously updating the temporal focus. It allows to step
through the time steps interactively in both directions of time,
to animate this process at a fixed step rate, and to rewind
and loop animation sequences. For the generation of short
repeated animation sequences of especially interesting time
spans, all options for animations can be restricted to a specific
time interval.

In addition to interactively cycling through time steps, we
also provide the integration of data from time steps out of
focus as temporal context in attribute visualization views.
We follow the focus+context visualization concept for this
purpose. All data items in focus from the selected time steps
are shown in a prominent style (black points in scatterplots),
whereas the data items from the temporal context (not selected
time steps) is visually deemphasized (in grey-level style)to
just provide an impression of the overall data distribution. This
requires, however, that the user pays attention to the fact that
during brushing in an attribute view, the brush action only
is applied to the data items in focus, but not to the context.
Figure 11 shows an example, where only data from a small
time interval is in focus.

In SimVis, all views can also display time values on all
axes, similar to regular attribute values. Examples include the
mapping of time onto the axes of scatterplots (see figure 9) or
the color-coding of time when jointly rendering multiple time
steps in the 3D view.

Scaling the attribute visualization

In the visualization of time-dependent data, ranges of data
attributes usually vary between time steps. When visualizing
data from different time steps (or time intervals), this hasto be
considered. We provide different scaling options in each view:
local scalingto the data range of the currently visualized time
step (or time interval),global scalingto the data range of all
time steps,scaling to a specific selection(scaling to a brush),
anduser-defined scaling(interactive scaling) as illustrated by
figure 11. Here velocities (x-axis) vs. temperatures (y-axis)
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Fig. 11. Illustration of three different types ofview scalingfor the data from figure 5 (velocity vs. temperature in all three scatterplots): (a) scaling to show
all data (all time steps); (b) scaling to the data from a selected time interval; (c) scaling to the previously brushed selection (brush from a).

of flow data from figure 5 are plotted in three scatterplots.
Figure 11a shows global scaling for the full time range,
figure 11b scales to the data ranges of a selected time interval
(time steps 48 to 52 out of 100 available time steps), and
figure 11c shows the data distribution scaled to the brush,
shown in the first two examples.

Multi-level focus+context visualization

Since SimVis utilizes a multi-view approach to focus+context
visualization, feature specification is possible in any of the
attribute views. SimVis not only provides the opportunity to
specify multiple features in multiple views, but especially
supports the interactive specification of complex featuresin
two or more views. Degree-of-interest values which stem from
(smooth) brushes in one or more views can be AND-, OR-,
and SUB-combined, based on fuzzy logic operations [6]. In
the focus+context visualization, we differentiate four levels:

• most important (first-level focus) is the DOI attribution
which represents the complex feature itself (after logical
combinations). In the attribute views, shades of red are
used to represent data items in first-level focus.

• within each of the attribute views, all those data items
which on the one hand are brushed but on the other hand
are not in first-level focus (due to the logical combination
with other brushes) are considered as second-level focus.
Shades of yellow are used to visually enhance the second-
level focus.

• all data items from the time interval, which has been
used as the temporal support for the feature specification,
and which are not in first- or second-level focus, are
considered as first-level context in the visualization and
visualized in black.

• all other data items, i.e., the data items outside the
selected time interval, are considered as second-level
context for visualization and visualized in grey (or left
out entirely).

Concerning drawing order in the visualization, we note that
first-level focus is drawn over second-level focus, and so on.

Extensions to 3D rendering in SimVis

The rendering of data from single time steps in the 3D
rendering view in a step-through or animated mode is straight
forward. In contrast, 3D rendering of data from a time interval
is a more complicated case. In feature-based rendering, the
concurrent visualization of data from multiple time steps
allows to show the temporal evolution of features in one
single image. Another effect is, that by rendering a few time
steps simultaneously, outliers, i.e., parts of features which are
present only for a short time, are smoothed out and thereby
deemphasized.

When rendering data from a time interval in the 3D visu-
alization, all selected time steps are rendered into one final
image. We render the cells sorted (back to front) and for each
cell all time steps are rendered and composited. Each time step
(out ofn) is rendered using a reduced opacityβ = 1− n

√
1−α ,

so that the overall opacityα (for all time steps) stays the same,
whether only one time step is rendered or several. Figure 15
shows a result of such a 3D rendering of several time steps.

V. L ARGE DATA HANDLING

Datasets from CFD simulation usually are large or even huge.
The size of the data is influenced by the number of time steps,
the number of data attributes at each cell, and the number of
grid cells themselves. Dealing with very large datasets during
visualization and interaction is a challenging task, therefore
optimized data access policies are very important for a useful
visual analysis framework like SimVis.

The datasets which we are currently analyzing with the
SimVis system have about 100 time steps, 20–50 data at-
tributes and 100,000 to 1,000,000 cells. File sizes of such
datasets range from several hundred megabytes to a few
gigabytes. The main extensions to the SimVis system for
supporting an efficient handling of large datasets are outlined
below. Further details are discussed in a separate paper [13].

First, we enabled lazy loading (activating) of data attributes.
This is realized by implementing aVirtual Proxy pattern [12]
in the data attribute classes. Due to the fact that it is very
expensive in terms of system resources to leave all data
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Fig. 12. Using a time-dependent flow feature, based on a stationary flow attribute (large amounts of water), to generate a visualization sequence which well
visualizes the impact of a flood (caused by a breaching dyke) onto a nearby object.

attributes permanently activated, a caching algorithm based
on a LRU (least recently used) queue has been implemented.
First-order data attributes, which can be re-read from the
simulation output at any time, are not swapped out to a new
external file for later reuse as opposed to data resulting from
attribute derivation.

In addition to the improved memory management, SimVis
also has been optimized with respect to computational perfor-
mance. The original version of SimVis was single-threaded,
resulting in a blocking behaviour in certain cases – originally
about 90% of the computing time was used for the calculation
of DOI values and mouse interaction continuously triggereda
recomputation of the DOI values. Our solution to maintain an
interactive response of the user interface (without blocking),
and thus to enable interactive changes of feature specifications,
was to decouple the DOI computation from the user interface
by using two threads. The DOI computation thread notifies
the registered views after finishing the computation to update
the viewing information accordingly. DOI computation time
is additionally reduced by only recalculating parts of the DOI
hierarchy, which are affected by user interactions.

To further speed up computationally intensive processes, we
also investigated two hardware-dependent features:

Intel Pentium IV processors support the powerful SSE
instruction set (Streaming SIMD Extensions [10]) which can
perform calculations on four 32 bit float values simultaneously.
It is possible to optimize the calculation of the DOI function
based on this extension, since it packs 4 operations into one.
On the other hand, the Pentium IV also supportshyperthread-
ing technology (HT) [1] which offers thread-level parallelism,
enabling multi-threaded applications to make better use of
CPU resources as compared to single-threaded applications.

We tested both solutions for their suitability in the special
case of calculating combinations of data coming from different
large float arrays (as it is the case for the performance-
critical parts of the DOI calculation). As a benchmark we
used the following case: the minimum T-norm (logical AND)
of arbitrary DOI values from two arrays with 50,000 entries
each is calculated (similar to the combination of brushes in
SimVis [6]). Figure 13 gives averaged results for multiple
tests with the different setups (with and without SSE, with
and without hyperthreading). Using (only) the SSE instruction
set gives the maximum speed-up for our case. When adding

Fig. 13. Comparing DOI calculation times for different computational setups.

hyperthreading (by using different threads for calculating parts
of the combinations, for example), no further speed-up can
be achieved. Compared to using only SSE extensions, the
increased cache miss numbers due to using different threads
even slow down computations significantly in most cases. We
therefore optimized the calulation of the DOI function based
on the SSE extensions.

The SimVis system currently runs interactively on a stan-
dard PC (Intel Pentium4, 2.8GHz, 2GB of memory) with a
NVidia GeForceFX 5900 graphics card for datasets of up to
10 million data items (cells*time steps), and 50 to 100 data
attributes for each data item.

For the implementation of SimVis, a Java/C++ hybrid
approach was chosen. The UI interaction and the handling of
the feature specification have been realized in Java, whereas
mesh access and the rendering of the visualization views is
implemented in native code. Native methods are called via
the JNI API. The mesh access has been realized by using
a proprietary data mesh format. Data coming from different
data sources can be easily converted to this format via linked
readers.

VI. A PPLICATION EXAMPLES

In the following, we briefly sketch two examples of inter-
active visual flow analysis, using our time-dependent feature
specification setup. Further results, as well as a short video,
demonstrating the interactive behaviour of the framework
and the process of how to specify complex, time-dependent
features, are available on the project home page [18]. Another,
also more detailed application description is available ina
case study report on the interactive visual analysis of a Diesel
exhaust system [9]. In this case study, a subset of the time-
dependent features which are discussed in this paper already
proved to be very useful in a real-world analysis.
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A. Flood after the burst of a dam

The first example demonstrates the investigation of a CFD
simulation of the burst of a dam and the resulting flooding
of the surrounding area. The dataset, which can be seen in
figures 1 and 12, is made up of a grid of 76,505 cells, exhibits
28 attribute dimensions, and is organized in 48 time steps. The
flood is simulated as a two-phase flow, comprised of water
and air. The interesting region in this simulation is the region
around an obstacle which is located closely to the bursting
dam (on the right side in figure 14). In figure 12, a time-
dependent feature has been specified to investigate how long
the flood actually impacts this object. Also the height-level of
the impact in different phases of the simulation can be clearly
seen from this visualization.

The feature has been specified by smoothly brushing values
of high cell fraction of water (high in cells where water is).The
specification has then been refined by restricting the selection
to represent only cells which stay at a high level of water cell
fraction longer than just a few time steps (using the stationary
attribute derivation of water cell fraction). The latter restriction
eliminates all cells, where just for one or two time steps
transient flooding occurs, i.e., we focus only on those parts
which are seriously affected by the flood. The features in focus
are colored according to the water cell fraction values, yellow
denoting medium cell fractions (partly mixed with air) and red
showing regions of water only. The temporal evolution in this
figure is from upper left to lower right image.

What can be clearly seen is the recirculation zone in front
of the obstacle. It is also interesting that the simulation yields
a long-term high level of flooding. For details on the setup of
the feature and an animation of the resulting feature, please
refer to the accompanying video [18].

SimVis also has been connected to RTVR [22], which
provides real-time volume rendering of 3D data – volume
rendering means that a semi-transparent 3D data continuum
is considered, which is rendered back-to-front through a large
number of successive blending steps, eventually generating an
impression of a semi-transparent data medium. So we are also
able to visualize features as specified with our framework with
high-speed, real-time volume rendering [16]. As the RTVR
allows only rendering of regular grids, the exchange of data
between SimVis and RTVR works via on-demand hardware-
software balanced resampling of the DOI values into a regular
grid, based on an algorithm by Weiler and Ertl [33].

Figure 14 shows an RTVR volume rendering of a feature
describing areas of high water cell fraction at timet = 38 s.
The boundary surface of the dataset is rendered as a set of
contour lines which reduces visual clutter due to occlusionin
3D rendering.

In figure 1 another time-dependent feature is visualized
for three different time steps of this dataset (12, 20, and 46
seconds after simulation start). This feature shows the local
maxima (red) and minima (green) for regions with significant
volume fraction of water. As can be clearly seen, flow fronts
are usually preceded/succeeded by alternating minima/maxima
of volume fraction values, respectively.

Fig. 14. Showing large amounts of water in the flood simulation data (dyke
breach) by the use of volume rendering.

Fig. 15. Joint 3D rendering of all temperature data for all 100 time steps,
highlighting high velocities. More opaque data subsets correspond to areas
which remain in focus, i.e., which exhibit larger velocities, for a longer time.

Fig. 16. Time steps 16, 36, and 60 of the extended T-junction dataset,
showing the same feature as in figure 15, but time step by time step.

B. Mixing time-shifted flows in an extended T-junction

Figure 16 shows a second application example, namely an
extended T-junction, consisting of two inlets (one on a lower
level, right side, the other on a higher level, front) and one
outlet (left side, upper level). Near the front inlet, an obstacle
is blocking the flow. This dataset consists of 30,930 cells on
an unstructured grid, each cell having 18 data attributes. The
temporal domain spans 100 equidistant time steps.
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Fig. 17. The regions around two different flow fronts are selected by specifying a single time-dependent feature using first- and second-order derivatives of
temperature values (see text for details).

The dataset has two time-shifted inflows from the two inlets,
one starting at time step 0 from the right inlet, injecting warm
fluid into the T-junction, the other one from the front inlet,
starting at time step 33, injecting hot flow. The two flows mix
in the chamber around the obstacle.

Figure 15 shows a 3D rendering of temperature values for
the data of all 100 time steps of the dataset. The visualized
feature is specified by high velocity values smoothly brushed
for the middle part of the dataset (right inlet and left outlet
have been neglected). The image shows, which parts are in
focus and for how long (the more opaque, the longer in focus).
The color codes global temperature values over the whole
data, with red coding high values and green showing low
temperature (initial temperature in the whole dataset).

When comparing this visualization to the three renderings
of the data from single time steps in figure 16, the following
difference can be observed: the 3D rendering of data from a
longer time interval gives a general overview, which regions
are in focus for longer periods of time. It smoothes out regions
being in short-term focus, like the green, low temperature
area in the upper image of time step 16 shown in figure 16.
Figure 16 shows time steps 16, 36, and 60 using the same
feature specification as in figure 15.

Another time-dependent feature is presented in figure 17.
It represents regions, where the temperature derivatives are
high and the rate of change of derivatives (second-order
differentiation) is either very high, or very low. This shows
regions, where temperature changes very much, but the change
itself is only short-term. This corresponds to the front and
backside of the flow fronts. By color coding according to
the change of derivatives, the distinction between positive
and negative changes of derivatives becomes visible in the
3D view. At time steps 0.4 s and 0.6 s after the start of the
simulation, the first flow front shows up, whereas at time
steps 3.3 s through 4.1 s the second flow front is visualized.
Note, that this is captured by the specification of one feature
(not temporally or spatially connected), although the two flow
fronts represented by this feature exhibit different temperature
ranges.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we presented recent extensions to our SimVis
framework for the interactive visual analysis of CFD sim-

ulation data, especially focussing on the demands oftime-
dependent CFD data. Extensions to the feature specification
process (for the definition of time-dependent features) are
realized throughattribute derivationand extended brushing
mechanisms. For the feature-based focus+context visualiza-
tion, extensions with respect to the visualization of time-
dependent flow data are presented. Performance improvements
to the SimVis system, which became necessary to handle large
datasets, are described.

Given a set of flexible tools for the interactive visual explo-
ration and analysis of large simulation datasets, the user gains
improved insight into CFD data. Attribute derivation, as means
to enable effective access to information which inherently
is dependent on time, as well as the support of data-range-
independent, relative data assessment are new tools which
support the specification of time-dependent flow features in
time-dependent datasets.

Using focus+context visualization proves to be espe-
cially suitable for the intuitive visualization of large, multi-
dimensional, and multi-variate datasets from unsteady CFD
simulations. We extended conventional 3D rendering of data
from singular time steps, by enabling a 3D visualization
of data from longer time intervals containing multiple time
steps to show temporal evolution of time-dependent feature
characteristics in a single image.

We are currently working on the extension of the SimVis
system to handle datasets which are based on time-varying
grids during the analysis of time-dependent simulation data.
First results have already been achieved (see figure 18 for
an example of a visualization of data from four different
time steps from the simulation of parts of the combustion
chamber of a Diesel engine [8]). Future work will include the
extension of the here presented attribute derivation methods for
specifying time-dependent features to cope with the special
challenges of data based on time-varying grids. The usage
of position-based methods for feature extraction will haveto
be included, as opposed to cell-based methods. An example
would be to calculate derivatives for absolute or relative
spatial positions rather than cell-based temporal derivatives.
Future work will also deal with the inclusion of explicit
feature representations of specified features. This will enable
comparisons of different feature specifications, and we thereby
also plan to establish a link to previous feature extraction-
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Fig. 18. Coping with datasets which are computed on time-varying grids: data from the simulation of parts of the combustion chamber of a Diesel engine
application is shown for four different time steps side by side.

based methods.
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