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Abstract: In this paper we introduce a novel method for automatic propa-
gation of foreground objects in image sequences. Our method is based on a
combination of the mean-shift operator with the well known intelligent scis-
sors technique. It is effective due to the fact that the images are captured with
high overlap, resulting in highly redundant scene information. The algorithm
requires an initial segmentation of one image of the sequence as an input. In
each consecutive image the segmentation of the previous image is taken as an
initialization and the propagation procedure proceeds along four major steps.
Each step refines the segmentation of the foreground object and the algorithm
converges until all images of the sequence are processed. We demonstrate the
effectiveness of our approach on several datasets.

1 Introduction

Efficient and interactive foreground/background separation of images have
become a fundamental part of many applications in computer vision and 3D
reconstruction [10]. Obviously manual segmentation is a tedious and time
consuming process, especially when applied on a large number of images, as
usual needed for a dense 3D reconstruction of complex objects. Therefore
many segmentation algorithms have been developed recently [1, 7].

This paper addresses the problem of automatic propagation of a foreground
object in a complex environment for 3D reconstruction, whose background can
not be removed in a simple way. The key idea of our approach is to take advan-
tage of the high overlap of the images. Essentially we utilize redundant scene
information to automate the segmentation procedure and propagate an ini-
tial segmentation through the image sequence. The goal of our approach is to
achieve a fast, automatic and robust foreground segmentation. Moreover, our
method minimizes the expenditure of time to achieve an accurate foreground
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segmentation. Its power can be derived from the fact that labelled image
sequences simplify the correspondence problem dramatically and therefore,
dense 3D reconstruction results of complex objects can be clearly improved.

The main methods to accomplish the propagation procedure are the well
known mean-shift technique and the intelligent scissors approach. Intelligent
scissors, introduced by Mortenson and Barrett [7], also known as Live Wire
or Magnetic Lasso, allows the user to define a precise contour with minimized
human interaction, by roughly tracing the objects contour with the mouse. A
user selects interactively optimal contour segments by immediately displaying
the minimum cost path between the so called current seed point and the
previous one, where the current seed point is represented as the position of
the mouse cursor. The optimal path is computed via dynammic programming
by applying Dijkstra’s graph search algorithm [4] to find the optimal spanning
tree. The second related technique is mean-shift analysis, which was originally
invented by Fukunaga and Hostetler [5] and recently successfully applied to
image segmentation and tracking by Comaniciu and Meer [2, 3]. The mean-
shift analysis approach is essentially defined as a gradient ascent search for
maxima in a density function defined over a high dimensional feature space.
The feature space include a combination of the spatial coordinates and all
its associated attributes that are considered during the analysis. The main
advantage of the mean-shift approach is based on the fact that it considers
geometric coordinates and the associated attributes together at the same time.

The remainder of the paper is composed as follows. After a brief overview
of our method we discuss the novel parts of the automatic foreground prop-
agation algorithm in section 2. Experimental results and concluding remarks
are presented in section 3 and 4.

2 The Automatic Foreground Propagation Algorithm

Our method is a multistage approach to separate a foreground object, for
example a statue, from the background in all images of an image sequence.
The algorithm requires as input an initial segmentation of one image, which
can be obtained by utilizing intelligent scissors [7], GrabCut [9] or other inter-
active segmentation techniques. In this paper we focus on the propagation of
this initial segmentation through all images of the sequence. The propagation
task itself is mainly based on a region based matching algorithm. Therefore
we segment the image into a certain number of regions. All these regions are
classified into three different sets (foreground, background and uncertain re-
gions), illustrated in Figure 2. The final contour can be extracted from these
three sets. For dividing the image into regions we employ a mean-shift image
segmentation proposed by Comaniciu and Meer [3].

Additionally, to improve the robustness of the propagation procedure, our
algorithm requires the relative orientation of the images to be known. The
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orientation is determined based on methods described by Horn [6], and Nis-
ter [8] and provides both, an accurate orientation and a set of corresponding
points.

The workflow of our proposed approach can be roughly seen as the com-
position of the following consecutive subtasks:

1. Extract an area of interest, which is called initial contour ring, with an
inner boundary and an outer boundary.

2. Utilize information acquired from the contour ring and from the corre-
sponding points to identify foreground and background regions.

3. Perform a region based matching algorithm based on mean-shift informa-
tion to separate the remaining regions in the contour ring in foreground
regions, background regions and uncertain regions.

4. Extract true contour segments from adjacent foreground and background
regions and utilize intelligent scissors to close uncertain contour segments.

This procedure is repeated until all images of the sequence are processed.

2.1 Initial Contour Ring

The first step in our approach consists of extracting an initial contour ring,
which represents an area of interest where we expect to find the true contour.
Therefore, the initial contour of the first image is swept along the epipolar
lines of the next image. For each position a support function can be formulated
as

Sc =
n∑

i=1

gi(x, y)

where gi(x, y) is the gradient of the contour i and n the number of sweep
positions. The position with the highest support function is confirmed and
represent the initial contour Ci in the next image. This initial contour Ci

contains a set of continuous points and deviates in general slightly from the
true contour of the current foreground object. Hence it is necessary to extract
a contour ring where we expect to obtain the final contour of the object. Our
next step includes an Euclidean distance transform on Ci to compute the
contour ring. The scale of the distance transform, respectively the width of
the contour ring can be directly derived from the relative orientation of the
images, which guarantees that the true contour of the object is within the
area of interest.

Such a contour ring, computed in the first step leads to several advantages.
First, the following processing steps can concentrate on a smaller number
of regions, which increases the performance of the algorithm dramatically.
Moreover, the inner and outer boundary of the contour ring can be used to
separate foreground regions and background regions with high confidence,
which is described in more detail in the next section. Lastly, the reduction of
the search area reduce the error propagation.
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2.2 Prior Information

As previously outlined, different prior information is incorporated, to sim-
plify the consecutive tasks and improve the robustness of our approach. We
distinguish between two important types of information:

1. Information provided by the contour ring.
2. Information provided by the corresponding points.

This information is used to label foreground regions and background re-
gions with high confidence. In the former case the separation can be directly
derived from the inner and outer boundary of the contour ring, which is illus-
trated in Figure 1.

Fig. 1. Illustration of utilized information. Each region, which is adjacent to the
inner boundary is labelled foreground (dark grey) and similar is applied for the outer
boundary regions (white). Additionally f indicates a foreground correspondence,
whereas b identifies a background correspondence, both acquired from the previous
segmentation.

Consequently we label all mean-shift regions which are directly connected
to the inner boundary of the ring to foreground and those connected to outer
boundary as background. A similar procedure is performed for the information
which is provided by the corresponding points. Here we take advantage of the
direct relationship of correspondences and simple separate foreground regions
from background regions by comparing their location in the previous image
against the already segmented contour.

2.3 Extended Region Matching

As mentioned before, we use the well known mean-shift algorithm to segment
the image into a set of regions. So far we have already classified some of
the mean-shift regions in our area of interest. For the remaining regions we
perform an region based matching algorithm against the previous segmented
image.

Basically our region matching algorithm works as follows: A matching
between two regions ri of the previous image and rj of the current image is
assigned with a similarity measure Si,j . The similarity measure Si,j is based
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on the mean-shift parameters and the known relative orientation. Currently
three different types of similarity measures are formulated. The first similarity
measure SLUV is represented by the LUV values of the mean-shift region,
where L encodes luminance, and U and V encode color information. The other
two similarity measures can be derived from the relative orientation. First,
SEpi encodes the distance of the epipolar line from region ri to the center of
gravity of region rj . Second, the similarity measure SCorr is composed from
the distance of the nearest corresponding point to region ri respectively to
region rj . The final distance function for two regions is formulated as:

d(ri, rj) = ω1 ∗ SLUV + ω2 ∗ SEpi + ω3 ∗ SCorr

where ω1...ω3 are weights to control the influence of the different similarity
measures. We can distinguish between foreground regions, background regions
and uncertain regions, by evaluating the introduced distance function for each
remaining region against a user defined threshold. Uncertain regions are re-
gions, which can be classified neither to foreground nor to background. In this
case a further processing is necessary.

2.4 Foreground Extraction

The aim is to extract the final foreground object from previously labelled
mean-shift regions. Obviously, the true contour lies between adjacent fore-
ground regions and background regions or intersects an uncertain region. In
the former case the final contour can be extracted with simple neighbourhood
checks, whereas in the latter case the intelligent scissors algorithm is applied.
Figure 2 illustrates the extraction of needed start and end points to initiate
the intelligent scissors procedure.

Fig. 2. Set of regions including foreground regions (F), background regions (B) and
uncertain regions (U) and the highlighted true contour. Furthermore an illustration
of start point (S) and end point (E) to automatically apply intelligent scissors.

Finally all obtained contour segments are combined to a closed continuous
contour of the foreground object.

3 Experimental Results

All presented image sequences were taken with a calibrated high quality digital
consumer camera with a 11.4 megapixels CMOS sensor. In a first evaluation



Sormann et.al.

we used an image sequence consisting of 12 images of a garden gnome which is
approximately 23cm tall with a diameter of 10cm. Figure 3 shows the garden
gnome with the overlayed segmentation, whereas Figure 4 demonstrates all
intermediate results of our method.

Fig. 3. Illustration of five images with overlayed segmentation of the garden gnome
image sequence. The garden gnome is approximately 23cm tall with a diameter of
10cm. The last image illustrates the obtained 3D reconstruction.

Figure 5 illustrates a more complex dataset consisting of 12 images showing
a statue of St. Barbara. The statue is 55cm tall with a diameter of 13cm at the
pedestal. As shown in Figure 5, automatic approaches will sometimes lead to
incorrect results. In our method, if the segmentation result is not satisfactory,
a user has the possibility to correct a miss-segmentation, by manual assign-
ment of the critical mean-shift regions or by an assisted intelligent scissors
algorithm.

Finally, Figure 6 demonstrates the usability of our approach on a real-
world dataset, which depicts a statue on the roof of the Austrian National
Library.

4 Conclusion and Future Work

We have developed an automatic foreground propagation method that per-
forms well in terms of accuracy, robustness and efficiency. Our approach takes
advantage of the redundant scene information, which is typically provided
from image sequences for 3D reconstruction. The primary purpose of our
method is the improvement of our 3D reconstruction results. Moreover, the
tedious process of an interactive segmentation of all images is dramatically
reduced, thus our method simply requires one initial segmentation.

Though the results are very promising, there are several improvements
that can be made to our approach. In order to achieve more accurate results
we are currently working on extending the similarity measures introduced by
extended region matching. Another consideration is to utilize active contour
models to extract foreground objects with sub-pixel accuracy.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Intermediate results of the automatic foreground propagation algorithm il-
lustrating one image of the garden gnome image sequence. (a) Close-up from (b)
showing labelled foreground (green) and background (blue) regions in the contour
ring after incorporating prior information. (d) Close-up from (c) illustrating la-
belled foreground (green), background (blue) and uncertain regions (red) after ap-
plying extended region matching. (e) Close-up from (f) showing start and end point
(red crosses) of intelligent scissors and the obtained true contour (blue) of a uncer-
tain region. (g) Garden gnome image with the final segmentation overlayed. (h)
Illustration of the achieved 3D reconstruction represented as depth map.

Fig. 5. Four images showing a statue of St. Barbara and achieved segmentation.
The Barbara statue is approximately 55cm tall with a diameter of 13cm. One image
of the sequence illustrates a small miss-segmentation, which can be corrected by
human assisted intelligent scissors. The last images consists of our obtained 3D
reconstruction result.
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Fig. 6. Four images of a statue on the roof of the Austrian National Library and
obtained propagation results. The first image illustrates the achieved mean-shift
segmentation.
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