
1

Fast Third-Order Texture Filtering

Christian Sigg Markus Hadwiger
 ETH Zürich VRVis Research Center

1 Introduction

Current programmable graphics hardware makes it possible to implement general convolution

filters in the fragment shader for high-quality texture filtering, such as cubic filters (Bjorke 2003).

However, several shortcomings are usually associated with these approaches: the need to perform

many texture lookups and the inability to antialias lookups with mipmaps, in particular. We

address these issues in this chapter for filtering with a cubic B-spline kernel and its first and

second derivatives in one, two, and three dimensions.

The major performance bottleneck of higher-order filters is the high number of input texture

samples that are required, which are usually obtained via repeated nearest-neighbor sampling of

the input texture. To reduce the number of input samples, we perform cubic filtering, building on

linear texture fetches instead, which reduces the number of texture accesses considerably,

especially for 2D and 3D filtering. Specifically, we are able to evaluate a tricubic filter with 64

summands using just eight trilinear texture fetches.

Approaches that perform custom filtering in the fragment shader depend on knowledge of the

input texture resolution, which usually prevents correct filtering of mipmapped textures. We

describe a general approach for adapting a higher-order filtering scheme to mipmapped textures.

Often, high-quality derivative reconstruction is required in addition to value reconstruction, for

example, in volume rendering. We extend our basic filtering method to reconstruction of

continuous first-order and second-order derivatives. A powerful application of these filters is on-

the-fly computation of implicit surface curvature with tricubic B-splines, which have been

applied to offline high-quality volume rendering, including nonphotorealistic styles (Kindlmann

et al. 2003).

2 Higher-Order Filtering

Both OpenGL and DirectX provide two different types of texture filtering: nearest-neighbor

sampling and linear filtering, corresponding to zeroth and first-order filter schemes. Both types

2

are natively supported by all GPUs. However, higher-order filtering modes often lead to superior

image quality. Moreover, higher-order schemes are necessary to compute continuous derivatives

of texture data.

We show how to implement efficient third-order texture filtering on current programmable

graphics hardware. The following discussion primarily considers the one-dimensional case, but it

extends directly to higher dimensions.

To reconstruct a texture with a cubic filter at a texture coordinate x, as shown in Figure 1a, we

have to evaluate the convolution sum

 0 1 1 2 1 3 2() () () ()i i i iw x f w x f w x f w x f− + +⋅ + ⋅ + ⋅ + ⋅ (1)

of four weighted neighboring texels fi. The weights wi(x) depend on the filter kernel used.

Although there are many types of filters, we restrict ourselves to B-spline filters in this chapter. If

the corresponding smoothing of the data is not desired, the method can also be adapted to

interpolating filters such as Catmull-Rom splines.

Note that cubic B-spline filtering is a natural extension of standard nearest-neighbor sampling and

linear filtering, which are zeroth and first-degree B-spline filters. The degree of the filter is

directly connected to the smoothness of the filtered data. Smooth data becomes especially

important when we want to compute derivatives. For volume rendering, where derivatives are

needed for shading, it has become common practice to store precomputed gradients along with

the data. Although this leads to a continuous approximation of first-order derivatives, it uses four

times more texture memory, which is often constrained in volume-rendering applications.

Moreover, this approach becomes impractical for second-order derivatives because of the large

storage overhead. On the other hand, on-the-fly cubic B-spline filtering yields continuous first-

order and second-order derivatives without any storage overhead.

3

Figure 1. The Cubic B-Spline and Its Derivatives

(a) Convolution of input samples fi with filter weights wi(x). First-order (b) and second-order (c)
derivatives of the cubic B-spline filter for direct reconstruction of derivatives via convolution.

3 Fast Recursive Cubic Convolution

We now present an optimized evaluation of the convolution sum that has been tuned for the

fundamental performance characteristics of graphics hardware, where linear texture filtering is

evaluated using fast special-purpose units. Hence, a single linear texture fetch is much faster than

two nearest-neighbor fetches, although both operations access the same number of texel values.

When evaluating the convolution sum, we would like to benefit from this extra performance.

The key idea is to rewrite Equation (1) as a sum of weighted linear interpolations between every

other pair of function samples. These linear interpolations can then be carried out using linear

texture filtering, which computes convex combinations denoted in the following as

 1(1) ,x i if f fα α += − ⋅ + ⋅ (2)

where i = ⎣x⎦ is the integer part and α = x − i is the fractional part of x. Building on such a

convex combination, we can rewrite a general linear combination a ⋅ fi + b ⋅ fi+1 with general a

and b as

 () ()i b a ba b f + ++ ⋅ (3)

as long as the convex combination property 0 ≤ b/(a + b) ≤ 1 is fulfilled. Thus, rather than

perform two texture lookups at fi and fi+1 and a linear interpolation, we can do a single lookup at i

+ b/(a + b) and just multiply by (a + b).

The combination property is exactly the case when a and b have the same sign and are not both

zero. The weights of Equation (1) with a cubic B-spline do meet this property, and therefore we

can rewrite the entire convolution sum:

4

() ()0 10 1 1 2 1 3 2 0 1() () () () () () ,i i i i x h x x h xw x f w x f w x f w x f g x f g x f− + + − +⋅ + ⋅ + ⋅ + ⋅ = ⋅ + ⋅ (4)

introducing new functions g0(x), g1(x), h0(x), and h1(x) as follows:

1
0 0 1 0

0 1

3
1 2 3 1

2 3

()() () () () 1
() ()

.
()

() () () () 1
() ()

w xg x w x w x h x x
w x w x

w x
g x w x w x h x x

w x w x

= + = − +
+

= + = + −
+

 (5)

Using this scheme, the 1D convolution sum can be evaluated using two linear texture fetches plus

one linear interpolation in the fragment program, which is faster than a straightforward

implementation using four nearest-neighbor fetches. But most important, this scheme works

especially well in higher dimensions, and for filtering in two and three dimensions, the number of

texture fetches is reduced considerably, leading to much higher performance.

The filter weights wi(x) for cubic B-splines are periodic in the interval x ∈ [0,1]: wi(x) = wi(α),

where α = x − ⎣x⎦ is the fractional part of x. Specifically,

() ()

()

3 2 3 2
0 1

3 2 3
2 3

1 1() 3 3 1 () 3 6 4
6 6 .
1 1() 3 3 3 1 ()
6 6

w w

w w

α α α α α α α

α α α α α α

= − + − + = − +

= − + + + =
 (6)

As a result, the functions gi(x) and hi(x) are also periodic in the interval x ∈ [0,1] and can

therefore be stored in a lookup texture.

We now discuss some implementation details, which include (1) transforming texture coordinates

between lookup and color texture and (2) computing the weighted sum of the texture fetch results.

The Cg code of the fragment program for one-dimensional cubic filtering is shown in Listing 1.

The schematic is shown in Figure 2.

As mentioned before, the functions gi(x) and hi(x) are stored in a lookup texture (called tex_hg

in the listing) to reduce the amount of operations in the fragment program. In practice, a 16-bit

texture of 128 samples is sufficient. Note that the functions are periodic in the sample positions of

the input texture. Therefore, we apply a linear transformation to the texture coordinate and use a

texture wrap parameter of GL_REPEAT for the lookup texture. The linear transformation is

incorporated into the fragment program for completeness. However, we would normally use a

separate texture coordinate computed in the vertex shader.

5

After fetching the offsets and weights from the lookup texture, we compute the texture coordinate

for the two linear texture fetches from the source color texture. Note that we need to scale the

offset by the inverse of the texture resolution, which is stored in a constant.

The rest of the program carries out the two color fetches and computes their weighted sum. Note

that B-splines fulfill the partition of unity ∑wi(x) = 1, and so do the two weights g0(x) + g1(x) = 1.

Therefore, we do not need to actually store g1(x) in addition to g0(x) in this case, and the final

weighting is again a convex combination carried out with a single lerp() instruction.

Listing 1. Cubic B-Spline Filtering of a One-Dimensional Texture

float4 bspline_1d_fp(float coord_source : TEXCOORD0

 uniform sampler1D tex_source, // source texture

 uniform sampler1D tex_hg, // filter offsets and weights

 uniform float e_x, // source texel size

 uniform float size_source // source texture size

) : COLOR

{

 // calc filter texture coordinates where [0,1] is a single texel

 // (can be done in vertex program instead)

 float coord_hg = coord_source * size_source – 0.5f;

 // fetch offsets and weights from filter texture

 float3 hg_x = tex1D(tex_hg, coord_hg).xyz;

 // determine linear sampling coordinates

 float coord_source1 = coord_source + hg_x.x * e_x;

 float coord_source0 = coord_source - hg_x.y * e_x;

 // fetch two linearly interpolated inputs

 float4 tex_source0 = tex1D(tex_source, coord_source0);

 float4 tex_source1 = tex1D(tex_source, coord_source1);

 // weight linear samples

 tex_source0 = lerp(tex_source0, tex_source1, tex_hg_x.z);

 return tex_source0;

}

The fragment shader parameters of Listing 1 would be initialized as follows for a 1D source

texture with 256 texels:

e_x = float(1/256.0f);

size_source = float(256.0f);

6

The e_x parameter corresponds to the size of a single source texel in texture coordinates, which

is needed to scale the offsets fetched from the filter texture to match the resolution of the source

texture. The size_source parameter simply contains the size of the source texture, which is

needed to compute filter texture from source texture coordinates so that the size of the entire filter

texture corresponds to a single texel of the source texture.

Figure 2. Cubic Filtering of a One-Dimensional Texture

To reconstruct a color texture of size N, we first perform a linear transformation of the
reconstruction position x (∗). This gives us the texture coordinates for reading offsets hi(x) and
weights gi(x) from a lookup texture. Second, two linear texture fetches of the color texture are
carried out at the offset positions (•). Finally, the output color is computed by a linear combination
of the fetched colors using the weights gi(x).

We now extend this cubic filtering method to higher dimensions, which is straightforward due to

the separability of tensor-product B-splines. Actually, our optimization works even better in

higher dimensions. Using bi- or trilinear texture lookups, we can combine 4 or 8 summands into

one weighted convex combination. Therefore, we are able to evaluate a tricubic filter with 64

summands using just eight trilinear texture fetches.

The offset and weight functions for multidimensional filtering can be computed independently for

each dimension using Equation (4). In our implementation, this relates to multiple fetches from

the same one-dimensional lookup texture. The final weights and offsets are then computed in the

fragment program using

 () () () () .
k ki k k i ki ig x g x h x e h x= = ⋅∏ ∑ (7)

Listing 2 shows an implementation that minimizes the number of dependent texture reads by

computing all texture coordinates at once.

7

Listing 2. Bicubic B-Spline Filtering

float4 bspline_2d_fp(float2 coord_source : TEXCOORD0,

 uniform sampler2D tex_source, // source texture

 uniform sampler1D tex_hg, // filter offsets and weights

 uniform float2 e_x, // texel size in x direction

 uniform float2 e_y, // texel size in y direction

 uniform float2 size_source // source texture size

) : COLOR

{

 // calc filter texture coordinates where [0,1] is a single texel

 // (can be done in vertex program instead)

 float2 coord_hg = coord_source * size_source – float2(0.5f, 0.5f);

 // fetch offsets and weights from filter texture

 float3 hg_x = tex1D(tex_hg, coord_hg.x).xyz;

 float3 hg_y = tex1D(tex_hg, coord_hg.y).xyz;

 // determine linear sampling coordinates

 float2 coord_source10 = coord_source + hg_x.x * e_x;

 float2 coord_source00 = coord_source – hg_x.y * e_x;

 float2 coord_source11 = coord_source10 + hg_y.x * e_y;

 float2 coord_source01 = coord_source00 + hg_y.x * e_y;

 coord_source10 = coord_source10 - hg_y.y * e_y;

 coord_source00 = coord_source00 - hg_y.y * e_y;

 // fetch four linearly interpolated inputs

 float4 tex_source00 = tex2D(tex_source, coord_source00);

 float4 tex_source10 = tex2D(tex_source, coord_source10);

 float4 tex_source01 = tex2D(tex_source, coord_source01);

 float4 tex_source11 = tex2D(tex_source, coord_source11);

 // weight along y direction

 tex_source00 = lerp(tex_source00, tex_source01, hg_y.z);

 tex_source10 = lerp(tex_source10, tex_source11, hg_y.z);

 // weight along x direction

 tex_source00 = lerp(tex_source00, tex_source10, hg_x.z);

 return tex_src00;

}

8

The fragment shader parameters of Listing 2 would be initialized as follows for a 2D source

texture with 256×128 texels:

e_x = float2(1/256.0f, 0.0f);

e_y = float2(0.0f, 1/128.0f);

size_source = float2(256.0f, 128.0f);

The special way the source texel size is stored in the e_x and e_y parameters allows us to

compute the coordinates of all four source samples with a minimal number of instructions,

because in this way we can avoid applying offsets along the x axis for all four samples, as shown

in Listing 2. In three dimensions, the same approach makes it possible to compute all eight source

coordinates with only 14 multiply-add instructions.

Filtering in three dimensions is a straightforward extension of Listing 2.

4 Mipmapping

For mipmapped textures, we run into the problem that the offset and scale operations of texture

coordinates that correspond to the input texture resolution cannot be done with uniform fragment

shader constants as shown in Listings 1 and 2. When a texture is mipmapped, the actual texture

resolution changes on a per-fragment basis (for GL_*_MIPMAP_NEAREST filtering) or is even a

linear interpolation between two adjacent texture resolutions (for GL_*_MIPMAP_LINEAR

filtering).

In this chapter, we describe only the case of GL_*_MIPMAP_NEAREST filtering in detail.

However, GL_*_MIPMAP_LINEAR filtering can also be handled with a slightly extended

approach that filters both contributing mipmap levels with a bicubic filter and interpolates

linearly between the two in the fragment shader.

For our filtering approach, we need to know the actual mipmap level and corresponding texture

resolution used for a given fragment in order to obtain correct offsets (e_x, e_y, e_z) and scale

factors (size_source). However, on current architectures, it is not possible to query the

mipmap level in the fragment shader. We therefore use a workaround that stores mipmap

information in what we call a meta-mipmap. The meta-mipmap is an additional mipmap that in

each level stores the same information in all texels, such as the resolution of this level. A similar

approach can be used to simulate derivative instructions in the fragment shader (Pharr 2003).

9

We use a floating-point RGB texture for the meta-mipmap, as follows:

// RGB meta-mipmap information for each texel of a given mipmap_level

metatexel = float3(1/level_width, 1/level_height, mipmap_level);

The following code fragment shows how the size_source and e_x, e_y scales and offsets in

Listings 1 and 2 (where they were uniform parameters) can then be substituted by a correct per-

fragment adaptation to the actual mipmap level used by the hardware for the current fragment:

// fetch meta-mipmap information

float3 meta = tex2D(tex_meta, coord_source).xyz;

// compute scales from offsets so we do not need to store them

float2 size_source = float2(1.0f/meta.x, 1.0f/meta.y);

// filter texture coordinates

// where [0,1] is a single texel of the source texture

// (cannot be done in the vertex program anymore)

float2 coord_hg = coord_source * size_source – 0.5f;

// adjust neighbor sample offsets

e_x *= meta.x;

e_y *= meta.y;

Now e_x and e_y are initialized to unit vectors instead of being premultiplied with the texture

dimensions:

e_x = float2(1.0f, 0.0f);

e_y = float2(0.0f, 1.0f);

For GL_*_MIPMAP_NEAREST filtering, we do not need the third component of the meta-mipmap

(meta.z), which stores the mipmap level itself. However, to implement GL_*_MIPMAP_LINEAR

filtering, we also need the interpolation weight between the two contributing mipmap levels. This

weight can then be obtained as frac(meta.z) from the third meta-mipmap component as

interpolated by the hardware.

An important consideration when using a meta-mipmap is its texture memory footprint, which

can be quite considerable when used in a straightforward manner. Theoretically, we would need a

meta-mipmap for each texture size and aspect ratio that an application is using in order to get the

corresponding mipmap information. However, this memory overhead can be reduced

considerably.

10

First, we use only a single meta-mipmap that matches the highest texture resolution used in the

application (called meta_baselevel_size). To get correct mipmapping information for any

resolution, we strip higher resolutions of the meta-mipmap on the fly by setting the

GL_TEXTURE_BASE_LEVEL texture parameter to match the resolution of the current texture

(called target_size):

glTexParameter(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL,

 log2(meta_baselevel_size / target_size));

Second, a meta-mipmap of height 1 can indeed be used for all aspect ratios and dimensions if the

fragment shader profile supports the ddx() and ddy() functions for obtaining partial derivatives

of texture coordinates with respect to screen coordinates. These functions, together with the

variant of tex2D(), which accepts user-supplied derivatives, allow us to simulate all aspect

ratios with respect to mipmap level selection even without knowing the actual mipmap level.

The texture fetch from the meta-mipmap is then performed with modified derivatives:

// requires uniform float2 meta_adjust; see below

// fetch and modify derivatives

float2 meta_ddx = ddx(coord_source) * meta_adjust;

float2 meta_ddy = ddy(coord_source) * meta_adjust;

// sample meta-mipmap with modified derivatives

float3 meta = tex2D(tex_meta, coord_src, meta_ddx, meta_ddy).xyz;

The uniform parameter meta_adjust must be set in order to adapt the actual aspect ratio of the

meta-mipmap to the aspect ratio of the target texture, where cur_base_size is the actual size of

the current GL_TEXTURE_BASE_LEVEL of the meta-mipmap:

meta_adjust = float2(target_size_x/cur_base_size, target_size_y);

Because we supply modified derivatives that ultimately determine the mipmap level that the

hardware will use, we effectively simulate a different aspect ratio of the meta-mipmap without

requiring the corresponding storage.

In summary, the meta-mipmap texture memory footprint can be reduced to a single 1D texture

with the highest texture resolution (of any axis) the application is using. This single meta-mipmap

can then be used when filtering any application texture by setting the meta-mipmap’s

11

GL_TEXTURE_BASE_LEVEL and the meta_adjust uniform fragment shader parameter

accordingly. Figure 3 shows the quality improvement using higher-order texture filtering.

Figure 3. Comparing Texture-Filter Quality with Bilinear and Bicubic Reconstruction Filters

(a, c) Bilinear and (b, d) bicubic reconstruction filters.

5 Derivative Reconstruction

In addition to reconstructing the values in a texture map, the reconstruction of its derivatives also

has many applications. For example, in volume rendering, the gradient of the volume is often

used as a surface normal for shading. The gradient g of a scalar field f, in this case a 3D texture, is

composed of its first partial derivatives:

 , , .
T

f f f
g f

x y z
⎛ ⎞∂ ∂ ∂

= ∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠
. (8)

The most common method for approximating gradient information is to use a simple central

differencing scheme. However, for high-quality derivatives, we can also use convolution filters

and apply the scheme illustrated previously for fast evaluation on GPUs. Figure 4 shows the

quality improvement using higher-order gradients for Phong shading of isosurfaces. To

reconstruct a derivative via filtering, we convolve the original data with the derivative of the filter

kernel. Figure 1b illustrates the first and second derivatives of the cubic B-spline. Computing the

derivative becomes very similar to reconstructing the function value, just by using a different

filter kernel.

12

Figure 4. Comparing Shading Quality with Trilinear and Tricubic Reconstruction Filters

Phong shading of a torus isosurface using (a) trilinear and (b) tricubic reconstruction filters for
both function value and gradient, respectively.

We can apply the fast filtering scheme outlined previously for derivative reconstruction with a

derived cubic B-spline. The only difference in this case is that now all the filter kernel weights

sum up to zero instead of one ∑wi(x) = 0. Now, in comparison to Listing 1, where the two linear

input samples were weighted using a single lerp(), we obtain the second weight as the negative

of the first one, that is, g1(x) = −g0(x), which can be written as a single subtraction and subsequent

multiplication, as shown in Listing 3.

Listing 3. First-Derivative Cubic B-Spline Filtering of a One-Dimensional Texture

// . . . unchanged from Listing 1

 // weight linear samples

 tex_source0 = hg_x.z * (tex_source0 - tex_source1);

 return tex_source0;

}

To compute the gradient in higher dimensions, we obtain the corresponding filter kernels via the

tensor product of a 1D derived cubic B-spline for the axis of derivation, and a 1D (nonderived)

cubic B-splines for the other axes.

In addition to first partial derivatives, second partial derivatives can also be computed very

quickly on GPUs. All these second derivatives taken together make up the Hessian matrix H,

shown here for the 3D case:

13

2 2 2

2

2 2 2

2

2 2 2

2

.

f f f
x y x zx

f f f
y x y zy

f f f
z x z y z

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂

= ∇ = ⎜ ⎟∂ ∂ ∂ ∂∂⎜ ⎟
⎜ ⎟∂ ∂ ∂⎜ ⎟
∂ ∂ ∂ ∂ ∂⎝ ⎠

H g . (9)

The mixed derivatives in H (the off-diagonal elements) can be computed using the fast filtering

approach for first derivatives that we have just described, because the 1D filter kernels are

derived only once in this case.

For the diagonal elements of H, however, the derivative of the filter kernel itself has to be taken

two times. Figure 1c shows the second derivative of the cubic B-spline, which is a piecewise

linear function. The convolution sum with this filter is very simple to evaluate. Listing 4 shows

how to do this using three linearly interpolated input samples. In this case, no filter texture is

needed, due to the simple shape of the filter. The three input samples are simply fetched at unit

intervals and weighted with a vector of (1, −2, 1).

Listing 4. Second-Derivative Cubic B-Spline Filtering of a One-Dimensional Texture

float4 bspline_dd_1d_fp(float coord_source : TEXCOORD0

 uniform sampler1D tex_source, // source texture

 uniform float e_x // source texel size

) : COLOR

{

 // determine additional linear sampling coordinates

 float coord_source1 = coord_source + e_x;

 float coord_source0 = coord_source - e_x;

 // fetch three linearly interpolated inputs

 float4 tex_source0 = tex1D(tex_source, coord_source0);

 float4 tex_sourcex = tex1D(tex_source, coord_source);

 float4 tex_source1 = tex1D(tex_source, coord_source1);

 // weight linear samples

 tex_source0 = tex_source0 – 2 * tex_sourcex + tex_source1;

 return tex_source0;

}

A powerful application of high-quality first and second derivative information is computing

implicit surface curvature from volume data stored in a 3D texture. Implicit surface curvature in

14

this case is the curvature of isosurfaces, which can easily be rendered on graphics hardware

(Westermann and Ertl 1998).

Implicit curvature information can be computed directly from the gradient g and the Hessian

matrix H (Kindlmann et al. 2003), for which tricubic B-spline filters yield high-quality results.

Each of the required nine components (three for g and six for H, due to symmetry), requires the

evaluation of a separate tricubic convolution filter, which has traditionally been extremely

expensive. However, using the fast filtering scheme described in this chapter, it can actually be

done in real time on current GPUs.

Figure 5. Nonphotorealistic Isosurface Rendering Using On-the-Fly Maximum Curvature
Evaluation

(a, b) Two synthetic data sets generated using a regular sampling of blob models. (c, d, e)
Different isolevels of a distance field generated from the dragon triangle mesh. All data sets have
1283 samples and run at interactive speed (approximately 20 frames per second).

6 Conclusion

This chapter has presented an efficient method for third-order texture filtering with a considerably

reduced number of input texture fetches. Building on the assumption that a linear texture fetch is

as fast as or not much slower than a nearest-neighbor texture fetch, we have optimized filtering

with a third-order filter kernel such as a cubic B-spline to build on a small number of linear

15

texture fetches. A cubic output sample requires 2 instead of 4 input samples, a bicubic output

sample can be computed from 4 instead of 16 input samples, and tricubic filtering is possible with

8 instead of 64 fetches from the input texture. In fact, the corresponding fragment programs are

more similar to “hand-coded” linear interpolation than to cubic filtering.

Another advantage of this method is that all computations that depend on the filter kernel are

precomputed and stored in small 1D lookup textures. This way, the actual fragment shader can be

kept independent from the filter kernel in use (Hadwiger et al. 2001). The fragment shaders for

value and first-derivative reconstruction that we have shown can be used without change with a

Gaussian filter of appropriate width, for example.

A disadvantage of building on linear input samples is that it may require higher precision of the

input texture for high-quality results. On current GPUs, linear interpolation of 8-bit textures is

also performed at a similar precision, which is not sufficient for tricubic filtering, where a single

trilinearly interpolated sample contains the contribution of 8 input samples. We have used 16-bit

textures in our implementation, which provides sufficient precision of the underlying linear

interpolation. Many current-generation GPUs also support filtering of floating-point textures,

which would provide even higher precision.

In another vein, we have used our filters for function (or derivative) reconstruction, which in

OpenGL terminology is called magnification filtering. For higher-order filters to also work with

texture minification, we have shown how to extend their use to mipmapped textures. A major

point here is the reduction of the memory footprint of the required additional texture information

(which we call a meta-mipmap).

Finally, we have shown how our method can be used for high-quality reconstruction of first and

second partial derivatives, which is especially useful for volume rendering or rendering implicit

surfaces represented by a signed distance field, for example. Differential surface properties such

as curvature can be computed with high quality in real time.

7 Acknowledgments

The authors would like to thank Markus Gross and Katja Bühler; and Henning Scharsach for

implementation of a GPU raycaster. The second author has been supported by the Kplus program

of the Austrian government.

16

8 References and Further Reading

Bjorke, Kevin. 2004. “High-Quality Filtering.” In GPU Gems, edited by Randima Fernando, pp.

391–415. Addison-Wesley. Gives a very nice overview of different applications for high-

quality filtering with filter kernels evaluated procedurally in the fragment shader.

Hadwiger, Markus, Thomas Theußl, Helwig Hauser, and Eduard Gröller. 2001. “Hardware-

Accelerated High-Quality Filtering on PC Hardware.” In Proceedings of Vision,

Modeling, and Visualization 2001, pp. 105–112. Stores all filter kernel information in

textures and evaluates arbitrary convolution sums in multiple rendering passes without

procedural computations or dependent texture lookups. Can be implemented in a single

pass on today’s GPUs.

Kindlmann, Gordon, Ross Whitaker, Tolga Tasdizen, and Torsten Möller. 2003. “Curvature-

Based Transfer Functions for Direct Volume Rendering: Methods and Applications.” In

Proceedings of IEEE Visualization 2003, pp. 513–520. Shows how implicit surface

curvature can be computed directly from first and second partial derivatives obtained via

tricubic B-spline filtering, along with very nice applications, including nonphotorealistic

rendering.

Pharr, Matt. 2004. “Fast Filter-Width Estimates with Texture Maps.” In GPU Gems, edited by

Randima Fernando, pp. 417–424. Addison-Wesley. Uses the concept of mipmaps that

store information about the mipmap level itself in all pixels of a given mipmap level for

approximating the ddx() and ddy() fragment shader instructions.

Westermann, Rüdiger, and Thomas Ertl. 1998. “Efficiently Using Graphics Hardware in Volume

Rendering Applications.” In Proceedings of SIGGRAPH 98, pp. 169–177. Shows how to

render isosurfaces of volume data by using the hardware alpha test and back-to-front

rendering. On current GPUs, using the discard() instruction and front-to-back

rendering provides better performance in combination with early-z testing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

