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Abstract

Opacity transfer function (OTF) generation for direct volume rendering of medical image data is an intensely

discussed subject. Several automatic methods exist for CT and MRI data, which are not apt for ultrasound data,

mainly due to its low signal–to–noise ratio. Furthermore, ultrasound (US) imaging is able to produce time-varying

3D datasets in real time thus opening the door to 4D visualization. However, OTF design for 4D datasets has not

been exhaustively discussed until now. We present an efficient solution to generate an optimized OTF for a given

3DUS dataset in real time. Our method results in excellent visualization which we demonstrate using 3D fetus

datasets. Finally, we discuss the applicability of our method to 4DUS visualization.

Keywords: 3D/4D ultrasound, direct volume rendering, transfer function

1 Introduction

While 2D ultrasound is an established medical imaging modality since long

ago, 3D ultrasound imaging (3DUS) has continually gained importance in many

medical fields during the last few years [1], [2], [3], [4], [5]. Ultrasound imag-

ing has many advantages in comparison to computerized tomography (CT),

magnetic resonance imaging (MRI). The absence of ionizing radiation renders

the installation of special treatment rooms unnecessary and provides diagnostic

possibilities wherever more invasive techniques are prohibitive, like for exam-

ple in fetal imaging.

Not surprisingly, despite the rather noisy nature of the images, US imaging is

2



the method of choice for many diagnostic tasks nowadays. With the ever in-

creasing computational power of available computer hardware and advances in

algorithms for visualization of three-dimensional digital data, 3DUS has found

its way into everyday clinical life. E.g., in radiotherapy, 3DUS is used for appli-

cations as diverse as prostate segmentation for radiotherapy treatment planning

[6], [7], [8], patient positioning for prostate treatment [9], or breast biopsy and

monitoring of carotid atherosclerosis in response to therapy [10]. Within the

field of ophthalmology, diagnosis and quantitative analysis of various ocular

diseases like choroidal melanoma or retinoblastoma can be assisted by 3DUS

[11], [12]. Cardiology is a classic US domain and the extension from 2D to 3D

scanning techniques promises for example better pre- and post-surgical plan-

ning, improved measurement of heart functions, decreased exam times, better

quantification of size, shape and function of the heart, improved localization

of abnormalities for surgical planning [13], facilitated analysis of septal de-

fects [14], or more accurate quantification of cardiac chamber volume, mass

and ventricular functions [15]. Intravascular US (IVUS) likewise profits from

3D scanning techniques, providing better quantitative analysis of degree and

extent of coronary/artery plaque [16], [17], [18], [19]. In obstetrics and gy-

necology 3DUS has also been found to be a valuable and powerful diagnostic
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tool, fetal imaging being one of the most popular 3DUS applications [20], [21].

Nelson, Pretorius et al. provide an overview over this exciting domain [5].

However, while the visualization of two-dimensional medical data is rather triv-

ial, visualization of three-dimensional data is not. Basically, there are two ap-

proaches for visualization of these data sets, namely those based on surface

extraction and direct volume rendering. The latter is a method which is read-

ily available for visualization of volumetric data without the need to compute

an explicit surface model prior to visualization. For this reason, direct volume

rendering is particularly popular. This is especially true for modalities where

the segmentation task is difficult to handle. 3DUS imaging is one of these

modalities. The following US image characteristics make many conventional

segmentation and visualization techniques fail:

• The coherent nature of the ultrasound imaging pulse is responsible for inter-

ference effects and the appearance of speckle artifacts which often exceed

the specular echo intensity.

• The dynamic range is much lower than in CT or MRI.

• Variations in the intensity of neighboring voxels are high, even within areas

of homogeneous tissue. Rather, signal intensity locally increases at the
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interface between adjacent tissues.

• Boundaries show varying gray level caused by the variation of surface cur-

vature and orientation to the sound source. The regions representing bound-

aries are not sharp but show a width of several pixels.

• Surfaces are partially or completely shadowed from objects closer to and

within the direction of the sound source.

• Sonography is a highly interactive modality: the physician moves the sound

source and expects to immediately see the image from the new point–of–

view. Thus, all visualization techniques need to work in or near real-time.

It is important to understand that in the direct volume rendering approach the

delineation of the surface by some kind of 3D segmentation of the original data

set is replaced by applying an opacity transfer function (OTF). Proper design of

this function, which maps voxel properties to opacities, is of great importance

and determines the final result of the visualization process, as one can see in

Figure 8.

Georgios Sakas et al. were among the first to point out that MRI and CT sur-

face reconstruction techniques do not yield reasonable results if applied to ul-

trasound data [20][21]. Instead, they suggest a multi-scale binarize, low-pass,

threshold & propagate (BLTP) method to preprocess the volumetric data. Sub-
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sequently, they employ direct volume rendering for surface visualization, us-

ing a slightly modified version of Marc Levoy’s standard volume rendering

pipeline [22]. Their approach yields pleasing results in case of data sets with

high contrast between the structures of interest and the background. In the con-

clusions of [20], they state that a surface extraction method which adapts to the

local characteristics could improve the appearance of the rendered volume. We

propose the adaptation of the OTF using surface information.

This paper is organized as follows: We briefly summarize previous work on

OTF design in section 2 and discuss the most commonly used OTF in 3D

sonography, a piecewise linear OTF, in section 3. In section 4 we introduce

our methodology to adjust OTFs to a specific data set in an automated way, pre-

senting an alternative family of parabolic OTFs which outperform linear OTFs

in matters of image contrast. Section 5 deals with the subject of “temporal

coherence”, e.g. the question whether a single initial OTF or view-dependent

OTFs are superior in visualizing time varying datasets. The paper ends with

results achieved by our approach in section 6 and conclusions in section 7.
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2 Previous Work

In the past different OTF design approaches have been suggested. Basically,

there are two classes, namely these which require user interaction, and those

which work fully automatic. Among the latter is a stochastic optimization

technique based on objective measures of the rendered image suggested by

Taosong He et al. [23]. Unfortunately, their evolutionary approach is com-

putationally demanding, and the definition of objective measures for rendered

ultrasound data is not easy.

A different approach based on histogram volumes has been proposed by Gordon

Kindlmann et al. in [24]. This approach unfortunately requires that the regions

of interest are boundaries between different materials modeled by a step edge.

This is a reasonable assumption for anatomical structures in CT data sets, but

not for ultrasound data. An extension of this method toward multidimensional

transfer functions by Kniss et al. aims at the visualization of multivariate vol-

ume data [25]. An OTF design technique using 3D filter responses proposed by

Yoshinobu Sato et al. [26] uses even more detailed models of local structures

such as sheets, lines, and blobs, and is thus not applicable to ultrasound data,

either.

A 3D field topology approach by Issei Fujishiro et al. [27] as well as the eval-
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uation of the contour spectrum by Chandrajit Bajaj et al. [28] are based on the

evaluation of isosurfaces. As discussed above, in sonography tissue boundaries

often show varying gray levels caused by the variation of surface curvature and

orientation to the sound source, or shadowing. The structure of interest will thus

most probably not match with an isosurface.

Christof Rezk–Salama et al. suggested to use manually designed “optimal”

transfer functions as reference templates [29]. By non-linear time warping they

compute a non-linear distortion of the data value axis to obtain alignment of

the normalized histograms of both the reference data set and the data set cur-

rently under examination. Unfortunately, for sonographic data alignment of the

histograms is not a sufficient criterion to obtain a pleasing visualization.

Hence, although all these automated transfer function design techniques have

proven to be useful in many visualization tasks the unique characteristics of

sonographic data prevents their application.

3 Piecewise Linear Opacity Transfer Functions

The most commonly used transfer function for rendering of volumetric ultra-

sound data is based on Marc Levoy’s seminal paper on direct volume render-

ing [22]. He suggested an opacity transfer function considering the intensity
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I(xi) of a voxel xi as well as its gradient ∇I(xi). Because of the low signal–to–

noise ratio of sonographic data and the high sensitivity of the gradient to noise

this transfer function is hardly ever used for ultrasound data visualization di-

rectly. Rather, it is common practice to either preprocess the data as proposed

by Sakas in [20] and [21], or to base the transfer function solely on image in-

tensity. In the latter case, a commonly used OTF is a simple piecewise linear

monotonically increasing function

α(I) =














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
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
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
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

0 if I < LL,

a(I −LL) if LL ≤ I ≤ LH ,

a(LH −LL) if I > LH .

(1)

This OTF resembles a “fuzzy” segmentation of the entire data volume by an

intensity threshold: Voxels with intensities I below LL are classified as “invis-

ible”, i.e., their opacity α is set to zero. Intensities between LL and LH have

increasing opacities while intensities above LH yield maximum opacity. An

OTF of this form is useful for visualization of anatomical structures embedded

in hypoechoic areas, i.e. areas with low signal intensity. A typical example is

the data set of a fetus floating in amniotic fluid. For the result one obtains for

LL = 20,a = 0.5, and LH = 255 see Figure 8(b). The shape of the OTF is mo-

tivated by an increase in signal intensities near tissue boundaries, such as the
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interface between amniotic fluid and fetal tissue (see Figures 2 and 3).

Despite the simplicity of (1) three parameters need to be determined. Usually,

this adjustment has to be done manually on a trial–and–error basis not only

for every single data set but also depending on the view. It is also not clear

whether a piecewise linear OTF allows to obtain an optimal visualization for a

given data set. Thus, before going for automated OTF design, it was imperative

to investigate in which way the choice of a specific initial OTF influences the

contrast in rendered images.

4 Adaptive OTF Design

One of the most important applications of volume rendering of 3DUS data is

the visualization of a fetus embedded in amniotic fluid. We therefore based our

theoretical considerations about contrast enhancement on a simple two-intensity

data model mimicking this scenario: tissue of high signal intensity c1 is located

behind some lower intensity area with signal intensity c2. In order to produce

a 2D projection of voxel values in the viewing plane we use the volumetric

compositing stage proposed by Marc Levoy in [22]: Rays are cast from the eye

into the voxel arrays and color and opacity information are combined into single

values to provide a final pixel intensity. For our data model, we assume that, in
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viewing direction, the rays first pass through voxels with intensity c2, and that

the intensity changes to c1 at a distinct position k∗. For a single voxel at position

k along the ray,

Cout = Cin
(

1−α(k)
)

+ c(k)α(k), (2)

with Cout the outgoing intensity and color for the voxel, Cin the incoming inten-

sity, α(k) the opacity assigned to the voxel at position k along the ray and c(k)

its color or intensity. The final intensity C(r) due to the set of K voxels that

intercept the ray r is given by

C(r) =
K

∑
k=0

(

c(r,k)α(r,k)
K

∏
i=k+1

(

1−α(r, i)
)

)

, (3)

where (r,k) is the k-th voxel along the r-th ray, and c(r,0) is the color of an

opaque background, i.e. α(r,0) = 1.

Based on this rendering scheme and our data model, we compared the perfor-

mance of linear, parabolic (α(I) = a · I2 , ∀I) and 4th order parabolic OTFs

(α(I) = a · I4 , ∀I). We found that, from a theoretical point of view, parabolic

OTFs outperform linear OTFs concerning image contrast. The complete analy-

sis can be found in [30].

We now provide means to adjust an OTF to a specific data set. We aim at an

automated adjustment to allow the online computation of an optimal OTF for

acquired volume data sets at high frame rates. Unfortunately, we lack an objec-
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tive function which would allow to tune the OTF by an optimization approach.

Nevertheless, we aim at an automated adaptation of OTFs. To achieve this goal

we take an heuristic approach as follows: We detect the interface between tis-

sue H with high echogenicity and low echogenic area L. Subsequently we use

information about H and L to modify an initial OTF. The task of choosing an

appropriate surface is not easy. There are the following difficulties: Because of

the noisy characteristics of ultrasound data, it might be difficult to identify the

interface between H and L (see Figure 2). There might be multiple interfaces of

equal magnitude, but at different intensities. If we have identified the interface

between H and L, most probably it will be some kind of noisy ramp rather than

one distinct step edge.

Figure 1

4.1 Surface Detection

The proposed methodology for estimating the tissue surface is based on the

evaluation of so called tube cores. Having defined the z-axis parallel to the ray

casting direction, a tube core is a collection of voxels gathered by traversing

the volume in z-direction with a specific diameter. Considering the discrete

framework, we specify the diameter by its width in x- and y-direction in voxels.

A tube core resembles an intensity profile as in Figure 2, but has an extension
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greater than one in x- and y-direction. Using a tube core width greater than one

is motivated by the noise inherent in ultrasound data. We place these tube cores

in an equally spaced grid. In order to further reduce the effects of low signal–to–

noise ratio we evaluate the signal intensities along a tube core t within cells Ct
i of

specific depth. The size of these cells is thus defined by the diameter of the tube

core and the cell depth. We may then assess statistical parameters of the signal

intensities within the cells, such as the mean signal intensity I(Ct
i). Our goal

is the detection of the position of a surface within the tube core. The measure

we use for this task is the variance of the intensities within the cells. Thus, we

use this parameter as interface indicating function. We will expunge the only

disadvantage of this parameter, the missing information about edge direction,

by subsequent processing.

Figure 2

Figure 3

Choosing the interface indicating function does not provide the final solution of

our problem, the detection of the interface we want to visualize. A closer look

at the graph of the interface indicating function in Figure 1 unveils that it is not

sufficient to look for the global maximum. Rather, we are looking for the first

significant local maximum, in viewing direction.
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We adopted the scale space filtering approach, originally proposed by Witkin

[31], to this problem. This method describes signals in terms of their extrema,

managing ambiguity of scale in an organized and natural way. The signal is

expanded by convolution with Gaussian kernels of decreasing size over a con-

tinuum scales. We track interfaces, i.e. maxima of the interface indicating func-

tion, in the vicinity of the result of the interface detection in the previous scale.

Within this range we choose the first local maximum in viewing direction. We

iterate this procedure until we finally locate an interface in the original scale.

The multiscale detection of the interface in Figure 3 is depicted in Figure 1.

The suggested method does not necessarily detect the most prominent nor the

very first interface in the tube core.

4.2 Transfer Function Modification

The aim of modification of the OTF is to reduce opacity for intensities which

typically appear prior to the detected surface while enhancing opacity of the

intensities located at the surface. Our approach is a multiplicative one. We

start with an OTF of parabolic shape and modify the initial OTF by one basis

function per tube core. Let x denote the intensity and T the number of tube

cores used, then the OTF α(x) reads
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α(x) =
T

∏
t=1

ft(x) · x2 (4)

We will now elaborate on the calculation of ft(x). First of all we extract two

parameters for every tube core t: The mean signal intensity It
L of all cells prior

to the position of detected surface st , and the mean signal intensity It
H of the cell

located exactly at the detected surface. Then, we design each individual basis

function gt(x) to have a minimum at It
L and a maximum at It

H . One family of

functions suitable for this task are functions of the form

gt(x) = axe−b(x−c)2
, (5)

which we scale to the range of values [-1;1] with a maximum at It
H and a mini-

mum at It
L by choosing

a =
√

2be, b =
2

(It
H − It

L)
2 , c =

1√
2b

+ It
L. (6)

Figure 4

We now have to transform the basis function to an appropriate range for multi-

plication, i.e.

ft(x) = (1+dt)
gt(x). (7)

Since the range of gt(x) is [-1;1], ft(x) ranges from 1/(1+dt) to (1+dt), thus

“raising” or “lowering” the parabolic basis function at the corresponding inten-
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sity x (see equation 4). The parameter dt(> 0) determines the weight of the

tube core t. Its calculation is based on the “quality” of the tube core, that is the

reliability of the surface extraction within this tube core. The proposed method

for detecting tissue interfaces works very well even for data with low signal-

to-noise ratio, but it does not detect the correct interface in every single case.

On the other hand, it might even happen that there is no interface at all to de-

tect, since the position of the tube core is outside the anatomical structures we

want to visualize. Therefore, we have to provide means to detect these cases

and eliminate their influence on the final OTF. This is done by assigning higher

values of dt to tube cores with highly reliable surface detection and vice versa.

There are two constraints at hand for determining the reliability of surface de-

tection. First, the maximum intensity before the surface must not exceed a

certain value. Otherwise, we either detected too deep an interface, or the entire

tube core is located within hyperechoic tissue. Hence, we compute a quality

measure wt
Î

for each tube core t based on the evaluation of the mean intensities

I(Ct
i) of all cells Ct

i prior to the detected surface st . Let Ît
L be the maximum of

these intensity values, i.e.

Ît
L = max

i<st

I(Ct
i). (8)

We then compute the histogram hÎ of the maximum intensities Ît
L of all tube
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cores t. By accumulation and normalization of the histogram we finally obtain

the quality factor wt
Î

for a specific tube core t with maximum intensity Ît
L:

wt
Î = 1− 1

N

Ît
L

∑
I=0

hÎ(I), (9)

with N the total number of tube cores.

Figure 5

We obtain a second quality measure wt
S in a similar way based on the histogram

hS of intensity slopes St at the detected surface position st of every tube core t.

Again, accumulation and normalization of the histogram allows us to assess a

quality factor wt
S for a specific tube core t with slope St:

wt
S =























1
N ∑St

S=0 hS(S) if S > 0

0 otherwise.

(10)

wt
Î

and wt
S allow the elimination of any influence of tube cores located within

tissue of constant echogenicity, but also a reduction of the influence of surfaces

with weak manifestation. In addition, we also exclude all tube cores with nega-

tive slope of intensity at the surface position, thereby eliminating the drawback

of the chosen interface indicating function. We use the quality measures wt
Î

and

wt
S to modulate the parameter dt in (7): We choose

dt = dmax ·wt
Î ·w

t
S. (11)
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The graph of all basis functions for the volume rendered in Figure 8 is depicted

in Figure 4.

5 Temporal coherence

Ultrasound imaging is a priori a real time imaging technique. In 2DUS imaging,

physicians are used to having the acquired images displayed instantaneously,

and to see the image change corresponding to the movement of the transducer

if a hand held device is being used. Not surprisingly, the same is expected

from 3DUS and modern 3DUS scanners are capable of providing real time 4D

visualization. Three different 4D scenarios can occur:

1. static transducer - moving object

2. static object - moving transducer

3. a combination of 1. and 2.

If an OTF which is dependent on the view of the scanned anatomy - like in our

case - is used for direct volume rendering of such 4D datasets, the following

question arises: is it sufficient to calculate an OTF based on the initial view and

render all subsequent 3D views using this same initial OTF ? Transfer func-

tions are usually designed or generated globally without taking the actual view

point into account. Even in 4D data sets involving multiple volumes, a transfer
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function is usually generated for a single frame and then used identically for

all frames in the sequence. The alternative would be to calculate a new OTF

every time the viewing angle changes or the object moves. The latter approach

would be feasible since our method is able to provide OTFs in real time (see

section 6.1). The advantage of a view-dependent OTF would obviously be that

the rendering result is optimized for the given viewing direction. Theoretically,

this could improve the contrast of details in comparison to a rendering using

an OTF generated from a different viewing angle. On the other hand, the OTF

could show large variations with viewing direction. This may cause incoherence

in intensity and contrast of the rendered images of a time varying sequence of

volumes.

To the best of our knowledge, this matter has not been exhaustively discussed in

the literature until now. Previous work on multiple transfer functions for time-

varying data exclusively considers the view-independent case where the data set

itself is changing over time [32].

However, if the transfer function generation itself is view-dependent, rotations

of the view lead to either the same problem of coherence between multiple

frames using different transfer functions, or a single global transfer function
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that is not optimal for all frames.

A general problem with time-dependent transfer functions is that what is actu-

ally visualized changes over time. These automatic changes are generally not

obvious to the user and may thus be difficult to interpret appropriately.

In order to evaluate which strategy produces superior visualization results, us-

age of a single initial OTF for rendering of time varying 3DUS datasets or

recalculation of the OTF for every new viewing angle and/or time increment,

we have performed the following tests. Since we had no access to real 4DUS

datasets, we have simulated a 4D scenario of type 2) by rotating static 3D

datasets. The rotation simulates the movement of the transducer relative to a

static anatomy/object. Results of the rendering of these 4D sequences can be

compared using a single OTF in one case and an OTF individually recalculated

for every viewing angle in the other case. We applied this technique to both a

real world dataset (the fetus of Figure 8) and an artificial dataset. The latter was

aimed to mimic the scenario of a fetus embedded in amniotic fluid, only using

basic geometric shapes to make differences in the rendered images (if any) more

apparent. An ellipsoid, a cylinder and various spheres were used to represent

object surfaces (high signal intensity), surrounded by tissue of intermediate sig-
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nal intensity which featured a “window” of low signal intensity (amniotic fluid).

We added speckle noise as it occurs in real world US datasets to our artificial

dataset. Due to the coherent nature of the radiation used in US imaging, the

statistics of the noise apparent in US images is not Gaussian but rather similar

to noise as occurring in Radar images or images from applications using opti-

cal laser radiation which has Rayleigh characteristics (see [33], [34], [35]). We

rotated both datasets within a range of [−45◦,+45◦] relative to an initial view

in steps of 1◦.

6 Results

6.1 OTF design

For the visualization of the 199×197×199 voxel data set in Figure 8 we use a

grid of 15×15 tube cores with an inter–tube core distance of 13 voxels in each

direction and a cell size of 5× 5× 5 voxels. The size of the Gaussian kernels

employed for setting up the scale space is 2n,3 ≤ n ≤ 7. Both the original and

the modified OTF are depicted in Figure 5.

By a highly efficient implementation of the proposed algorithm using the Intel R©

C++ Compiler 7.0 and Intel R© VTuneTMPerformance Analyzer 7.0 we yield an
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OTF for this volume within 29.38 milliseconds on a 2.5 GHz Intel R© Pentium R© 4–

based PC with 512 MB RAM. Thus, we could compute an optimal OTF at a

rate of 34 volumes per second. It is worth mentioning that we did not optimize

volume data access assuming that data access is one task of the ray–casting /

interpolation subsystem. Expectedly, surface detection is by a factor of more

than 5 more demanding than the iterative OTF design, even though scalespace

has been implemented by an FFT.

Figure 6

Figure 7

Figure 8

Further examples of the quality one can obtain by following our approach are

depicted in Figure 6. These are data sets of moderate quality as they often arise

in 3DUS imaging in clinical settings. Of course the proposed method also yields

excellent results for data sets of superior quality, such as in Figure 7.

All images presented here have been rendered in real-time using a high-quality

volume renderer [36] running on current consumer graphics hardware such as

an ATI Radeon 9800. The entire volume is stored in a 3D texture, which al-

lows to perform re-sampling and evaluation of the volume rendering integral
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by slicing this texture with multiple view-aligned polygons [37] and employing

hardware compositing.

Compositing of sample contributions along viewing rays has been done with

floating point accuracy, which is crucial for high-quality results when high sam-

pling rates are used. Floating point rendering and compositing has become pos-

sible on the latest generation of graphics cards.

The transfer function itself is stored in a 1D texture map and can be changed

interactively. Moreover, each rendered frame is allowed to use an individual

transfer function.

Typical frame rates on an ATI Radeon 9800 are 30 fps for preview compositing

quality (eight bits per color channel) and ten fps for high quality compositing

(16 bit floating point per color channel).

Thus, the interactive generation of an OTF can easily be integrated with real-

time volume rendering for display purposes.

6.2 Temporal coherence

The most natural way to visualize rendering results of 4D datasets is of course to

view the corresponding movies. We have therefore provided the movies show-

ing the rotation of the fetus dataset and the artificial dataset as described in
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section 5 on the WWW∗.

Figure 9 shows stills taken from these movies at distinct rotation angles. The

OTFs calculated for these angles do of course differ in both datasets (see Fig-

ure 10), but only to an extent that the final rendered images are visually almost

identical. This is not surprising since the surface extraction method uses infor-

mation from various locations throughout the volume and thus is robust with

respect to slight shifts of the tube core positions. When viewing the movies

generated using an individual OTF for each viewing angle (i.e., for each frame)

it appears that, while the rotational movement is smooth, the image is slightly

flickering. This is due to the slight variation of the OTFs between consecutive

frames. On the other hand, if one single OTF is used for rendering of the com-

plete 4D sequence, there is no flickering and the overall impression is smooth.

One possible remedy for the flickering is to locally smooth the OTF within the

time domain. The OTF at (αn/tn) thus incorporates information from OTFs at

previous instances (αn−m/tn−m) which avoids abrupt changes in the OTF. Any

reasonable smoothing technique can be employed, for example a moving least

squares algorithm or a simple mean value. We have used both a mean value

smoothing and a moving least squares calculation with a polynomial of order

two, taking the past five OTFs to determine the current OTF. This OTF was
∗http://www.acv.ac.at/ACV Publikationen.htm
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then used for rendering of the current frame, while the originally calculated

(unsmoothed) OTF was incorporated into the calculation of the next OTF. Our

tests have shown that this slight time domain smoothing effectively eliminates

the flickering (the corresponding movie can be found on the WWW site men-

tioned). Figure 11 shows the effect of time domain smoothing on a subset of

the OTFs generated for the 90◦ rotation of the fetus dataset. The additional

calculations needed embarking on such a strategy are not time consuming but

nevertheless only justified if view dependent OTFs yielded highly superior vi-

sualization of 4D datasets in comparison to using a single static OTF. If details

were revealed at specific viewing angles which were not distinguishable using

a single static OTF, a view dependent OTF would be highly advantageous.

Figure 9

Figure 10

Figure 11

7 Conclusions

We presented a novel technique for adaptively designing an opacity transfer

function for a sonographic data set in real time. By analyzing tube cores we
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yield an estimate for the position of the most prominent tissue transition, in

rendering direction, in a highly efficient way. We analyze the tube core cells

prior to and at the detected interface and use this information to adaptively

design an initial, parabolic OTF in a multiplicative way. Of course, the tube

core modification can also be applied to OTFs of different shape. Our exper-

iments on temporal coherence have shown that the proposed method for OTF

calculation is not only very efficient but also very robust. It thus allows online-

computation of OTFs for an entire sequence of acquired volumes. In a clini-

cal setup, time domain smoothing can be employed to produce coherent image

sequences whenever view dependent/time varying OTFs are desired. In our

tests, OTFs calculated from a large range of viewing angles (90◦) of a given 3D

dataset did only differ slightly. Therefore, computation of a single OTF for an

entire 4D sequence might be sufficient in many cases, guaranteeing a coherent

view of the 3D scenario.
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Figure 1: The interface indicating function and the position of the interface between amniotic fluid and fetal head in

Figure 2 and Figure 3 is depicted in blue. Multiscale detection starts with the detection of the first local maximum

at a coarse scale of the interface indicating function, indicated by the red dot. We then compute the range (dotted

lines) for subsequent maximum detection at finer scales.
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Figure 2: Signal intensity profile of the ultrasound data set of Figure 8. The position of an interface between tissue

of different echogenicity is indicated by a dot. For the position of the profile see Figure 3.
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Figure 3: Two orthogonal cross sections of the ultrasound data set of Figure 8. The position of the intensity profile

of Figure 2 is between the yellow lines. The position of the interface between amniotic fluid and fetal head detected

by analysis of a tube core is indicated by short red lines.
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Figure 4: Graph of all basis functions ft used to adapt the initial OTF to the data set of Figure 8 in a multiplicative

way. Each basis function has a minimum at the mean intensity It
L prior to the detected surface and a maximum

at the mean intensity It
H of the cell which is located at the surface detected for each tube core t. The range of ft

depends on tube core quality parameters wt
S and wt

Î
.
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Figure 5: Dotted: initial parabolic OTF. Solid: result of the modification by basis functions of Figure 4, used in

Figure 8(c). Dashed: manually adjusted piecewise linear OTF used in Figure 8(b).

38



0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

intensity

op
ac

ity

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

intensity

op
ac

ity

Figure 6: Further results of adaptive OTF design applied to moderate quality data sets arising frequently in clinical

settings. The original OTF is indicated as dotted line, the adapted OTF as solid line.
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Figure 7: The adaptive OTF design also yields superior results for high quality data sets.
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(a) Linear OTF (b) Manually designed piecewise lin. OTF

(c) Adaptively designed OTF

Figure 8: Direct volume rendering of an ultrasound data set of a fetus using three different global opacity transfer

functions (OTF).
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Summary:

Three dimensional ultrasound imaging is an ever increasing domain within the

spectrum of medical imaging. Its various advantages over CT and MR imaging

have made it a popular diagnostic tool despite its main inconvenience - the low

signal-to-noise ratio. The latter together with real time data acquisition make

3D visualization of ultrasound data challenging. Direct volume rendering is a

method frequently used to accomplish this task. While there are a couple of

transfer function design approaches for CT and MRI data, direct volume ren-

dering of ultrasound data commonly still relies on manual adjustment of an

inflexible piecewise linear opacity transfer function (OTF) on a trial–and–error

basis.

In this article, we present a method for automatic computation of optimized

OTFs for visualization of sonographic datasets. The proposed algorithm ex-

tracts information about possible surfaces positions (interfaces between tissues

of different echogenicity) and intensities within the viewing direction. This in-

formation is then used to modify a parabolic transfer function in a multiplicative

way thus that tissue interfaces are accentuated while lower signal tissues prior

to the interface in viewing direction are omitted. Our approach is inspired by a
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frequent scenario: imaging of a fetus embedded in amniotic fluid.

We show that our technique is efficient and capable of providing OTFs in real

time. We demonstrate the appropriateness of our approach on data sets of mod-

erate quality arising frequently in clinical settings. Furthermore, we present

considerations on temporal coherence, e.g. visualization of 4D (time varying

3D) datasets.
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-45◦ 0◦ +45◦

Figure 9: Renderings of a fetus and an artificial dataset using different viewing directions and OTFs (top row of

each dataset: same OTF has been used for rendering of all frames , bottom row: individual OTFs have been used

for each frame).
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(a) Fetus
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(b) artificial dataset

Figure 10: Dependence of the OTF on the viewing angle. (a) fetus dataset, (b) artificial dataset (dotted: -45◦, solid:

0◦, dashed: +45◦)
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Figure 11: Effect of time domain smoothing on a subsequence of OTFs generated for a rotating fetus dataset (left:

smoothed, right: original). The time domain shown covers a rotation of the dataset of 20◦.
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