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Abstract

We present a simple and universal camera calibration
method. Instead of extensive setups we are exploiting the
accurate angular positions of fixed stars. High precision
is achieved by compensating the interfering error sources.
Our approach uses a star catalog and requires a single in-
put image only. No additional user input information such
as focal length, exposure date or position is required. Fully
automatic processing and fast convergence is achieved by
performing three consecutive steps. First, a star segmen-
tation and centroid finding algorithm extracts the sub-pixel
positions of the luminaries. Second, an initial solution for
the most essential parameters is determined by combinato-
rial analysis. Finally, the Levenberg-Marquardt algorithm
is applied to solve the resulting non-linear system. Ex-
perimental results with several digital consumer cameras
demonstrate high robustness and accuracy. The introduced
method is advisable for applications where large calibra-
tion targets are required.

1. Introduction
Camera calibration is a fundamental task in computer vision
and establishes the transformation between object and im-
age space. In most cases a simple projective transformation
is not sufficient in terms of accuracy because of lens dis-
tortion. Therefore additional parameters for the used lens
distortion model have to be estimated. Once the calculated
distortion parameters are known, distortion correction can
be accomplished.

Camera calibration methods can be classified into two
basic categories [13]: Self calibration and photogrammetric
calibration.

The key to self calibration [2] is to find corresponding
points in image sequences of static scenes. These corre-
spondences are used to determine the internal and external
camera parameters simultaneously.

The photogrammetric methods require control points
with high geometrical precision that are captured from one
or different viewpoints. These projected control points are

∗klaus@vrvis.at

extracted and identified to calculate the camera parameters.
Multiple images are obligatory if the camera positions are
not known accurately and a planar target is used. In this
case it is not possible to determine the lines of sight for the
imaged control points. If the corresponding lines of sight
are available with high precision, all calibration parameters
can be derived from a single view. Considering this fact,
fixed stars are particularly suitable for calibration purposes,
due to the high accuracy of their angular positions. Exploit-
ing fixed stars as control points is not a new idea, although
it is not established in the computer vision community so
far. Schmid [9] proposed 1974 a stellar method to cali-
brate the Orbigon lens. More than 2400 stars are visible
on each image plate, which have to be identified manually.
Another necessity in this approach is the correction of the
atmospheric refraction. In order to obtain the required accu-
racy, several observations are necessary to calculate a least
square solution for the focal length, the principal point and
the distortion parameters.

Gustavsson [4] presented an estimate of the three di-
mensional resolution of the Auroral Large Imaging Sys-
tem (ALIS), and discussed the sensitivity of the resolution
to noise and artifacts. His work contains a chapter - ge-
ometrical calibration of ALIS - that presents a method to
determine the orientation and optical characteristics of the
used camera system. After manual identification of approx-
imately 20 stars, the camera rotation and optical parameters
are calculated. A subsequent semi-automatic step supports
the search for more stars. Afterwards a final optimisation
step is performed.

Much more research has been done at a related topic -
the tracking of stars. Star trackers are used in autonomous
attitude determination systems of spacecrafts. Such systems
[1, 12] provide high precision attitude information in near-
real time and consist of a digital camera that is mounted
to the body of the spacecraft, a central processing unit and
external memory for storing a star catalog. A segmenta-
tion step determines the sub-pixel position of the stars. In
the following recognition step the identification of extracted
stars is performed. This information is used to calculate the
attitude with high precision.
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In the following Sections 2 and 3 we explain the used
camera model and give the astronomic fundamentals. Our
calibration method is explained in Section 4. Experimental
results are shown in Section 5. Finally, Section 6 presents
the conclusions. For sake of clarity we denote stars which
are extracted from the input image as luminaries, whereas
stars from the star catalog are denoted as catalog stars.

2. Camera Model
Camera calibration is the task of solving the unknown pa-
rameters of the used camera model. Therefore we first have
to define a camera model that fulfils our accuracy require-
ment. We use a projective camera model augmented with a
common lens distortion correction [5]. Our camera model
which projects the world coordinate[X, Y, Z, 1]T to the im-
age coordinate[x, y, 1]T is given by
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whereλ denotes an arbitrary scale factor,sx the aspect ra-
tio, f the focal length (in pixel),cp = [xp, yp]T the optical
center (or principal point),R the rotation matrix andt the
translation vector. Hence we have 6 degrees of freedom
(DOF) for the extrinsic parametersR andt and 4 degrees
for the remaining intrinsic parameters. The lens distortion
is decomposed into a radial∆r(ad, k1, k2, ...) and a decen-
tering ∆d(ad, p1, p2, ...) component. The distorted image
coordinates ad = [xd, yd]T and the corrected coordinates
ac = [xc, yc]T are related by:

ac = ad + ∆r(ad, k1, k2, ...) + ∆d(ad, p1, p2, ...),
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where

xd = xd − xp, yd = yd − yp, rd =
√

(x2
d + y2

d).

Higher order terms (i≥ 3) of the radial distortion parame-
terski and the decentering distortion parameterspi can be
neglected, due to their insignificant relevance [5].

3. Basics of Astronomy
The most commonly used astronomical coordinate system
to indicate the position of stars on the celestial sphere is

theequatorial coordinate system. Thecelestial sphereis an
imaginary sphere that represents the entire sky, with the ob-
server located in its center. Spherical coordinates that are
composed of three parameters(δ, α, r) can be used to indi-
cate the object position in space, whereby thedeclinationδ
[-90◦ +90◦] and theright ascensionα [0h 24h] indicate its
direction.

Theapparent magnitudeis a logarithmic measure of the
brightness of a star as it appears to an observer on the earth
and its unit is the magnitudo - one magnitudo is written as
1m. Let m1 andm2 be two observed magnitudes andI1

andI2 their corresponding true intensities, then the follow-
ing relation holdsm1 − m2 = −2.5 · lg(I1/I2). With an
unarmed eye it is possible to see stars with magnitudes less
than6m. Sirius is the brightest star (except the sun) and has
a magnitude of−1m5. With a digital consumer camera and
several seconds exposure time, stars of a magnitudo up to
20m can be captured.

Next we address the effects caused by (i) parallax (ii)
scintillation and (iii) refraction as the main sources for po-
tential distortions in night sky imaging and discuss their rel-
evance in our processing. Theparallax of a (nearby) star is
the angular displacement of the star against the background
of more distant stars resulting from the motion of the earth
in its orbit around the sun. With a distance of 3.26 light
years, Proxima Centauri is the nearest fix star to our so-
lar system and therefore its parallax of0′′762 defines the
upper limit for the expected parallaxes. Using a standard
digital camera, the resulting pixel shift for a parallax of1′′

is less than1/50 pixel and therefore negligible. The other
effects make a luminary to appear as a disc rather than as
a distinct point in the image, as it would be expected for
point sources. First, quantum effects introduce diffraction.
Second, turbulences in the atmosphere cause fluctuations in
the magnitude and position of stars known asscintillation.
These effects let luminaries to appear larger, which reduces
the discriminatory of luminaries but, because of their radial
symmetry, they do not change the centroid position of a sin-
gle luminary.

Another important distortion that, in contrast to the oth-
ers, has to be compensated explicitly isrefraction. As any
other physical medium also the atmosphere has a particular
index of refraction that cause deflection of light rays which
always seems to lift the luminaries and let them to appear
closer to the zenith. Thezenith is the point at which the
celestial sphere is intersected by an upward extension of a
plumb line from the observer’s location on earth. While the
refraction in the direction of the zenith is zero, it changes
with an increasing difference angleθ to the zenith direction
as a result of the earth’s curvature. The effect can be com-
pensated by a series of odd powers of tan-functions [10],
thus

2



θ0(θ) = θ − 2.819676 · 10−4 · tan(θ)+ (1)

+ 3.248252 · 10−7 · tan3(θ)

denotes the corrected angle for an observed angleθ in ra-
dians. Considering a camera aligned with the zenith direc-
tion and an aperture angle of50◦, the maximal shift caused
by refraction can be determined to 0.017% of the image di-
agonal, i.e. the expected maximal shift using a 11 million
pixel camera is about 0.858 pixel.

For a more detailed explanation of the above topics we
refer to [8, 6]. In this paper we used the Yale Bright Star
catalogue that contains the most important parameters, such
as the declination, the right ascension and magnitudo, of
approximately 32.000 stars.

4. The Stellar Calibration Method
Our calibration method is performed in three steps. First the
stars in the image are extracted. As a result we obtain the
image position and magnitude of the projected stars. In the
second step an initial mapping between the extracted lumi-
naries and the stars from the catalog is determined. In the
last step a calibration parameter optimization and a consec-
utive mapping rectification are repeated several times.

4.1. Sky Segmentation and Star Centroiding
From the simple observation that a star is mapped to an im-
age as a bright region on dark background, the segmentation
of stars is easily done by binarization of the image using a
percentile threshold. Due to illumination differences, which
primarily stem from lens vignetting, distinct block process-
ing is used to obtain a robust star segmentation and to ensure
uniform distributed luminaries over the whole image. Small
regions, which usually correspond to pixel defects, like hot
pixel defects, are discarded. The segmentation yields coarse
coordinates of the luminary centroids.

The refinement of the center position of a star is shown in
Figure 1. The surrounding patch of size15×15 pixels (Fig-
ure 1(a)), is upsampled by a given factor (Figure 1(c)) and
the corresponding gradient map is calculated (Figure 1(d)).
Starting from the brightest region, the gray value threshold
is decreased, until an energy function is maximized. The
energy function is defined as the sum of the border gra-
dients and normalized by the border length (Figure 1(e)).
This leads to a segmented star image shown in Figure 1(f).
The segmentation ensures that the weighted center of grav-
ity algorithm [11] gives a robust estimation. Furthermore
weighted centering leads to more accurate results than us-
ing only binary weight centering.

The proposed method of centroid finding gives robust
results even in noisy images, which is the case in night sky

imaging. The magnitude of a luminary is calculated as the
sum of the segmented gray values, so that a small but bright
star gets a higher magnitude than a large dark one.
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Figure 1: Centroid estimation: star ’*’ indicates the ini-
tial solution and cross ’+’ gives the optimized solution (a)
15 × 15 pixel star neighborhood, (b) zoom of the center
3× 3 pixels, (c) patch upsampled by a factor of24, (d) gra-
dient map, (e) energy function with shown maximum (f)
segmented star.

4.2. Initial Estimation and Initial Mapping
Once we have extracted the position and magnitude of the
luminaries, an initial estimation of the essential camera pa-
rameters can be achieved. Star tracking systems use pre-
calibrated cameras and therefore have to solve the camera
rotation only. This task is significantly simpler than our
case, where the focal length is an additional DOF. Also
problematic is the unknown lens distortion which, accord-
ing to the lens, can cause a high distortion at border regions
of the image (size of several hundred pixels). Neverthe-
less it is possible to determine the essential parameters effi-
ciently by using a RANSAC [3] like procedure. If we have
an arbitrary mapping between two luminaries and two stars
in the catalog, it is possible to solve 4 DOF. Hence, the ori-
entation (3 DOF) and the focal length can be determined
for this mapping. In order to find correct mappings, a quite
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Figure 2: Star map for distance transformation containing
the brightest 800 stars. Stars close to the poles are distorted
due to the regular mapping.

high number of combinations have to be verified. All map-
pings are rated using the remaining stars. If the essential
camera parameters are determined by correct mappings, the
projected stars from the star catalog are close to correspond-
ing candidates. The best mapping maximizes the num-
ber of candidates that are within a given threshold. In or-
der to reach high performance only probable combinations
are verified very efficiently using the star map in Figure 2.
Since we ignore lens distortion in this step, we are only us-
ing stars extracted close to the camera center. Our procedure
to find a initial estimate is as follows:

1: Select theni brightest luminariesSI = {l1...lni} with
a quite small distancedi to the image center (good
values empirically found areni = 20 and di =
imagediagonal/4)

2: Select thenc brightest catalog starsSC = {s1...snc} (a
sufficient large value isnc = 100)

3: for all {(li, lj)|li, lj ∈ SI ; i < j} do
4: for all {(si, sj)|si, sj ∈ SC ; i < j} do
5: Calculate camera rotation and focal length
6: Determine a score for current mapping by cal-

culating spherical coordinates for the remaining
ni − 2 stars and perform a star map look up as
illustrated in Figure 3

7: if score is new maximumthen
8: store current parameters
9: end if

10: end for
11: end for
12: if score is too low (less than 50% of stars found in map)

then
13: Double nc and go to 1 (proceed search for better

mapping)
14: end if

4.3. Parameter Optimization

So far we have found a good estimate of the camera rota-
tion and the focal length. The remaining parameters are ini-

Figure 3: A correct mapping between the extracted lumi-
naries and the map stars implicates a high score. In this
example all extracted stars, indicated by crosses, have been
found in the map.

tially set to default values. The distortion coefficients are set
to zero, the principal point to the image center and the as-
pect ratio to one. The optimization of the unknown param-
eters and the refinement of the estimated ones is challeng-
ing, since it depends on a correct mapping and vice versa.
We solve this problem iteratively, where in each iteration
a new mapping with successive non-linear optimization is
performed. In order to ensure a fast convergence, we use a
decreasing threshold to truncate the maximum cost of each
correspondence.

Mapping for Current Parameters The task of the map-
ping step is to find the nearestnmap candidates for the
brightest catalog stars within the camera frustum. This is
done as follows:

1: for all stars of the star catalog (sorted according to their
brightness)do

2: Displace star to emulate atmospheric refraction by
formula 1

3: if displaced star is in camera frustumthen
4: Project displaced star into image using current

camera and distortion parameters
5: Use kd-tree data structure for efficient nearest

neighbor query
6: if distance is below thresholdthen
7: Append assignment(cind, lind) to the current

mappingMCL, wherecind indicates the index
of the catalog star andlind of the luminary

8: end if
9: if nmap stars are in camera frustumthen

10: exit
11: end if
12: end if
13: end for
The numbernmap is derived from the number of extracted
luminariesnext . In order to enable faster convergence,
nmap should be smaller thannext, as this increases the
probability that a correct correspondence exists. A good
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ratio that has been found empirically isnmap = 0.75next.
In order to incorporate the atmospheric refraction the zenith
direction of the exposure position is required. There are
three possibilities to determine the unknown two angles: (i)
The zenith direction can be derived from the camera direc-
tion as well as exposure date and exposure position (longi-
tude and latitude). (ii) The camera is assumed to be aligned
to the zenith direction. The direction is determined by the
line of sight that goes through the principal point. (iii) The
zenith direction is solved as two additional DOF in the opti-
mization step. For the initialization the line of sight through
the principal point is used as before. Since we do not require
any user input, our method uses this procedure.

Levenberg-Marquardt Optimization The found map-
ping MCL = {m1...mmsize} enables the refinement of all
parameters. A particularly qualified optimization method is
the Levenberg-Marquardt algorithm [7], which is a general
non-linear minimization algorithm. It dynamically mixes
Gauss-Newton and gradient-descent iterations and provides
fast convergence. As a result we receive the optimized pa-
rameters, which minimize the sum of squared distances be-
tween the projected catalog starscproj and the correspond-
ing extracted luminarieslext for the current mapping:

msize∑
i=1

|cproj [mi → cind]− lext[mi → cind]|2 −→ min

5. Experimental Results
Images from several digital consumer cameras are used to
analyze our calibration method in terms of robustness, ac-
curacy and performance. The results are shown in Table
1. The calibration succeeded for all cameras. The expo-
sure time ranges between 10 and 30 seconds. One problem
occurred for the image captured with the Olympus camera.
The original method determined a wrong initial solution for
the telephoto image, due to too few stars of the star map that
were located within the camera frustum. The problem was
solved by increasing the number of stars from 800 to 2000.

The mean error between projected stars and correspond-
ing luminaries ranges between 0.129 and 0.21 pixels and is
mainly caused by the inaccuracy of the star centroiding. In
the Figures 6 to 9 the calibration results are displayed using
different diagrams. In the upper diagram the determined
polynomial for the radial distortion is plotted. The middle
diagram shows an error distribution of the radial distance
from the principal point. The stars of the determined map-
ping are indicated by crosses. In the lower left, an error his-
togram is displayed. In the lower right, the two-dimensional
error between the projected stars and the corresponding lu-
minaries is shown.

The precision of finding the centroid of an object de-
pends on its size and on its contrast to the background.
Thus, the precision decreases for darker stars as shown in
Figure 4. We selected approximately 2100 luminaries that
were contained in the mapping of two different Canon 1Ds
images. They were sorted according to their magnitude and
combined in pins. The mean error of each block is used to
illustrate the dependency between brightness and accuracy.
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Figure 4: The accuracy of the star centroiding depends on
the brightness of the stars. The mean error increases for
darker stars.

Figure 5: The vertical vanishing point is calculated using
the extracted vertical lines of the house (zoomed out). It
serves as reference value for the determined zenith direction
which intersects the image plane at the position indicated by
the left dot.

Experiments show that a wrong zenith direction causes
only a very small error. Two reasons are responsible for this
effect: First the effect of the atmospheric refraction is low
and second the aberration caused by a wrong direction is
compensated through the other camera parameters. These
facts can interfere the correct determination. Therefore an
experiment was performed to evaluate the calculated direc-
tion of the zenith. We captured an image (Figure 5) con-
taining the night sky as well as a part of a house. We resam-
pled the image to compensate the lens distortion, extracted
lines and used them to calculate the vertical vanishing point.
From this vanishing point the zenith direction was derived
and used as reference value. The image coordinate of the
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Camera &
Objective

used image
format

radial distor-
tion k1-k3

decentering
distortion
p1,p2

principal
point

focal length
[pixel]

aspect ratio number of
correspon-
dences

mean error
[pixel]

calculation
time [sec] on
Athlon 2200+

figure

Canon 1Ds &
Sigma EX
[15mm]

4064∗2704
+3.386e-08
+4.294e-15
+6.739e-22

-1.770e-07
+6.688e-08

2058.789
1348.953 1763.798 0.9997 859 0.133 50.9 6

Canon 1Ds &
Sigma EX
[30mm]

4064∗2704
-5.656e-10
-1.188e-15
+4.384e-24

-1.142e-07
+1.118e-07

2051.640
1351.964 3290.615 0.9999 678 0.129 78.9 7

Minolta
Dimage 7i 2560∗1920

+3.939e-08
-3.981e-15
-7.423e-23

-4.746e-07
-3.709e-07

1265.785
908.248 2177.894 0.9998 866 0.193 87.6 8

FujiFilm S1
& Tamron

28-105
800∗600

-2.176e-07
-7.212e-12
-5.575e-18

+2.764e-07
-1.185e-07

404.104
251.380 1603.525 0.9997 420 0.165 28.2 9

Olympus
E-10 2240∗1680

-2.066e-08
-7.948e-14
-1.199e-20

+1.025e-07
-9.532-07

1243.597
820.915 9092.184 0.9983 119 0.21 83.2 /

Table 1: Camera calibration results for images captured with several cameras.

determined vanishing point is[1914,−612]T , whereas the
zenith direction determined in our calibration method inter-
sects the image plane at[1718,−629]T . Considering the
parameters of the used camera (Canon 1Ds with Sigma lens
[15mm]) the angle between the corresponding lines of sight
can be calculated. It is approximately 3.1 degrees - a devia-
tion with a very low impact (less than 1/400 for the camera
considered in Section 3) since the direction is only used to
incorporate the atmospheric refraction.

6. Summary and Conclusions
We have developed a universal camera calibration method
that performs well in terms of accuracy, robustness and per-
formance. In contrast to classical techniques which use a
2D calibration target, the proposed method enables the de-
termination of all essential camera and distortion parame-
ters from a single input image. Other techniques which re-
quire extensive setups such as two or three orthogonal tar-
gets are outperformed in terms of costs and flexibility. Our
method works with night sky images captured anywhere all
over the world and enables remote calibration. We plan to
offer our camera calibration as a service. For more infor-
mation, visitwww.vrvis.at/CameraCalibration.
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Figure 6: Calibration results for Canon EOS-1Ds with
Sigma EX 15-30mm [15mm]
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Figure 7: Calibration results for Canon EOS-1Ds with
Sigma EX 15-30mm [30mm]
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Figure 8: Calibration results for Minolta Dimage 7i
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Figure 9: Calibration results for FujiFilm FinePix S1 with
Tamron 28-105

7


