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Abstract

This paper introduces a method for the fast generation of sparse 3D point clouds from
multiple oriented images. We use a plane sweeping scheme to compute the 3D location
of edge features. A two step approach is used to find a set of tentative hypotheses, which
are then refined in an optimization pass. A robust image-based similarity measure is used
to verify the 3D hypotheses and identify false positives. We performed experiments on a
synthetic data set and on several real datasets.

1 Introduction

The computation of 3D structure from multiple images is one of the most important tasks in
computer vision. In literature many different approaches have been described. Originally the
various image matching methods were formulated for a stereo image pair. Recent methods [5],
incorporate multiple images to achieve a more robust matching result. Correlation-based dense
stereo matching methods are usually restricted to small baseline setups or in the case of video-
based stereo to image sequences with large overlap. A new method for dense multi-view
matching was proposed by [10]. This PDE-based approach is useful for the reconstruction of
widely separated views of an object. Dense image matching methods provide a disparity map
for the scene, i.e. for every pixel a disparity vectord(x, y) is given. The disparity is often
constrained by a smoothness criterion and the ordering constraint. These approaches produce
a dense 3D reconstruction, i.e. a 3D coordinate for every image pixel. Another branch are the
various voxel coloring methods [6, 9]. Those methods produce a volumetric model of the scene
and also work for scenes where the ordering constraint is violated. All the above mentioned
reconstruction approaches have the drawback of processing times in the order of minutes. For
model-based reconstruction a sparse 3D point cloud is sufficient for the extraction of 3D lines
and fitting planes or other 3D primitives. The sparse 3D data also yield robust seed points for
a subsequent dense reconstruction.

We present a method inspired by Jung et al. [4] which computes sparse 3D point clouds
from multiple oriented images. While the original method is used for reconstructing buildings
from aerial images we apply the method for close range scenes. Due to the more challenging



nature of close range scenes, for example the significantly higher depth range, we also incor-
porate an image-based similarity measure to verify the resulting 3D hypotheses. We apply
a plane sweeping scheme to generate 3D hypotheses and verify the hypotheses using purely
geometric criteria. In section 2 we outline our approach, in section 3 we present experimental
results for synthetic and real image data as well. Section 4 concludes the paper with an outlook
on future work.

2 Our Method

A plane sweeping method is used to traverse the volume for which the reconstruction is
searched. Figure 1 shows the top view of the setup. Multiple cameras (visualized as trian-
gles) view an object (light gray). One camera is chosen as key camera from which rays are
intersected with the 3D sweeping plane. The resulting 3D point is projected into all other
slave-cameras. A proximity or similarity criterion is now used to detect tentative 3D hypothe-
ses. In the case of voxel coloring this is the color consistency. In our case it is a combination
of proximity and gradient direction. A good hypothesis is characterized by a low re-projection
error, i.e. the 2D location of the projected 3D point is close to a feature point in all or many
of the slave-cameras. We use edgels as feature points, since edgels can be extracted with
sub-pixel accuracy with Canny’s method [2].

Every edgel in the key image now defines ray. This ray is intersected with the sweeping
plane. In order to accept a hypothesis the re-projection of the 3D intersection point must lie
close to an edgel in most of the slave-images. We chose distance thresholds in the range of
0.4 . . . 1 pixel. All hypotheses resulting from this sweeping process are subsequently refined
and a significant number of false positives is eliminated by enforcing a simple gradient di-
rection constraint. The remaining hypotheses are verified using a fast image-based similarity
measure inspired by Lowe’s SIFT-features [7]. The similarity measure is based on a histogram
comparison and therefore suitable for fast outlier detection.

2.1 Hypotheses Selection

In the sweeping stage we select hypotheses only with the proximity criterion. In the orig-
inal paper of Jung et al. [4] the proximity criterion is evaluated using a quad-tree for the
nearest neighbor search. The quad-tree approach however has a computational complexity of
O(log n), wheren is the number of points in the set, per nearest neighbor query. A more
efficient method is the use of distance transforms [1] of the edge points. The distance trans-
form allows us distance queries for 2D point sets inO(1). In our case the distance transform
is computed for the edgel locations. Using Chamfer filtering [1] a distance image is derived
from the input point set. The distance transforms are calculated for the edgel points of every
slave image. The determination of the re-projection error of a 3D hypothesis using the dis-
tance transform can then be achieved inO(1). Since the 2D coordinates of the re-projection
are non-integers we perform the image access operation in the distance transform images with
bi-cubic interpolation. An experiment where the distance transform approach was compared



Figure 1: Top view of the setup: Four cameras view an object (light gray). A key camera
(dark gray) is chosen and from this camera rays (shown as fat vector) are intersected with
the sweeping plane (fat line). The resulting 3D point is projected into all other cameras. The
sweep plane moves from front to back, the subsequent instance of the sweep plane is illustrated
as dashed line.

with a KD-tree-based nearest neighbor search showed that an average distance error of less
than 0.3 pixel can be achieved. This shows that it is justified to use the much faster distance
transforms to generate an initial set of 3D hypotheses.

2.2 Hypotheses Refinement

Given the 3D hypotheses that survived the sweeping process, a subsequent refinement opti-
mizes the 3D position and rejects hypotheses that violate the epipolar constraint and a simple
gradient direction constraint. For the refinement KD-trees are computed for the edgel sets,
since the KD-trees allow accurate nearest neighbor queries and access to additionally stored
features such as the gradient vectors. With the epipolar constraint we reject candidates that
result from edgels with a gradient direction nearly orthogonal to the direction of the epipolar
line. Figure 2 shows a section of an image overlaid with arrows for the gradient directions.
Edgels where the gradient direction is nearly orthogonal to the epipolar line (shown in red) are
not used for the computation of 3D hypotheses. This strategy avoids ambiguous hypothesis
for edgels where the tangent direction (which is orthogonal to the gradient) is nearly parallel
to the epipolar line vector.

Another criterion is formed by using the gradient directiong (see Figure 2): the enclosed
angle between the gradient direction of the edgel in the key-image and the candidate edgels
int the slave images must not exceed a certain threshold. This ensures that all edgels have the
same light-to-dark or dark-to-light transition, given that no severe rotation between the images
is present.
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Figure 2: Illustration of the epipolar constraint. (a) Section of an image where the edge di-
rections are shown as arrows and the length of the arrows corresponds to the magnitude. (b)
Geometry of edgels and epipolar line: the edgel is represented by its gradient directiong and
the tangent vectort. Edgels where the tangent vectort is nearly parallel to the epipolar linel
are not used for the reconstruction.

Hypotheses that survive the epipolar test are then refined by a fine search in the space
around the sweep plane location. Figure 3(a) shows the refinement search space between three
instances of the sweep plane (p1, p2, p3). The 3D hypothesis (shown as black dot) is moved
along the sweeping direction and projected into all images to evaluate the re-projection error.
A possible re-projection error function is shown in the bottom part of Figure 3(a). Only those
hypotheses that have a minimum within the search bounds are kept, if the minimum is on the
boundaries of the search range, the hypothesis is discarded. Figure 3(b) shows the evaluation
of the re-projection error: The goal is to minimize the perpendicular distancedt from the
tangent of the edgel to the projected 3D hypothesis. We evaluatedt only for the edgel with
the smallest Euclidean distancede to the projected 3D hypothesis. During the refined search
a large amount of the 3D hypotheses is discarded due to non-fulfillment of one of the above
criteria.

However, since the search range for terrestrial modeling is significantly higher as for the
aerial modeling in the original approach, a number of false positives is still present after the
refinement step. In order to detect and remove these false positive matches, a fast image-based
similarity measure is applied.

2.3 Image-based Outlier Removal

The similarity measure that is used to eliminate false positive is inspired by Lowe’s SIFT-
features [7]. This is a scale invariant descriptor which is originally computed for interest
points. We want to compute the descriptor for the two rectified image regions that are divided
along the edgel tangent direction. Since the SIFT-descriptor is not rotation invariant we need
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Figure 3: Refinement of 3D hypotheses. (a) shows the search space for the refinement (in light
gray) between three instances of the sweep plane (p1, p2, p3). The score function is depicted
in the bottom part of (a): only hypotheses that have a minimum within the search boundaries
are accepted. This holds only for the minimumm2 computed for sweep the plane instance
p2, m1 andm3 lie on the search range boundaries of the sweep plane instancesp1 andp3.
(b) shows the evaluation of the re-projection error in the 2D edgel sets: the projection of the
3D hypothesis (shown as ring) moves along the epipolar linel. The re-projection error is the
perpendicular distancedt to the tangent of the closest edgel (minimalde from the projected
hypothesis).

to compute it on rectified frames. Figure 4 shows the rectification approach: On the left side is
the original image with an edgel (white dot), its associated tangent direction (white line) and
the two attached image regions (shown in different hatching). We use the tangent direction to
compute a rectified frame, i.e. we apply an affine transform to align the tangent parallel to the
x-axis. The separation of the image area around a candidate edgel is necessary, since edgels
often lie on depth discontinuities. Due to these depth discontinuities one of the two image
regions that are divided by the edgel tangent may be occluded. Therefore only one side can be
used for reliable similarity comparison.

We first calculate the edge orientationϕ and magnitudem at each pixel inside the rectified
frameI:

m(x, y) =
√

(Ix−1,y + Ix+1,y)2 + (Ix−1,y + Ix+1,y)2 (1)

ϕ(x, y) = atan((Ix−1,y + Ix+1,y)/(Ix−1,y + Ix+1,y)). (2)

An orientation histogram is used as a region descriptor, the magnitude and the distance of the



Figure 4: Computing a rectified frame: the tangent direction is used to compute a frame that
is aligned parallel to the x-axis.

pixels from the origin are used as a weight. More formally the histogram is calculated as

H(θ) =
∑
ϕεN

δ(θ, ϕ) ∗ wϕ, (3)

whereH(θ) is the value for binθ (θ ∈ [0◦, 1◦ . . . 360◦]) and ϕ denotes angle values in a
neighborhoodN inside the Frame,wϕ is the weight ofϕ andδ(θ, ϕ) is the Kronecker delta
function. The anglesϕ are quantized in accordance with the histogram binsθ. The weight
wϕ is computed from the magnitude ofϕ and a function decreasing with increasing radiusr
from the origin(x0, y0). We use a Gaussian function thuswϕ(x, y) = m(x, y) ∗ g(r), with

r =
√

(x− x0)2 + (y − y0)2 andg(r) = 1
σ
√

2π
e
−r2

2σ2 .
Figure 5(a) visualizes the edge orientations for an image section and Figure 5(b) shows

a histogram computed from edge orientations. Since the descriptors are histograms we use
a probabilistic distance measure to describe the similarity. Distance measures for histogram
comparison are theL1 andL2 norm, the Bhattacharyya distance, and the Matusita distance.
The earth movers distance is a more complex method for histogram comparison and is com-
puted by solving the so called transportation problem, proposed for image indexing by Rubner
et al. [8]. Huet and Hancock [3] give a comparison of the performance of this measures for
histogram comparison. Following the conclusions of Rubner we chose the Bhattacharyya dis-
tance which is defined as:

DBhatt(HA, HB) = −ln
∑

i

√
HA(i) ·HA(i) (4)

We compute the Bhattacharyya distance separately for the two image regions between the
key-image and the slave images. The 3D hypothesis with a distance below a given threshold
is finally accepted, if more hypotheses are lying on the same 3D ray, only the one with the
smallest distance is accepted.
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Figure 5: Visualization of orientations in the rectified frame: (a) image region with vectors
visualizing the edge orientation (vector length corresponds to the magnitude). (b) histogram
of edge orientations.

Scene initial hypotheses remainingfinal 3D points execution
hypotheses after refinement time

synthetic sequence 301532 17971 7142 47 sec.
courtyard sequence 234101 23312 18714 81 sec.

statue sequence 587687 49817 12423 143 sec.

Table 1: Evaluation of the reconstruction performance. Results are given for the 3 image
sequences in Figures 7 and 8.

3 Experiments

Several experiments were carried out on a synthetic and real data. Figures 6, 7 and 8 show
one image of each scene used. Every scene consists of five images and the threshold for
the re-projection error is set to 0.4 pixel. The size of the support region for the image-based
verification of the refined hypotheses was set to 15× 15 pixel.

The interior camera parameters are determined by an offline camera calibration and the ex-
terior camera orientation parameters of the images are determined by automatic multi-image
matching followed by an estimation of the relative orientation of the sequence and a final bun-
dle adjustment. The depth range for the sweeping is ten times the average baseline between
the cameras. Only a small number of false positives is still present after the image-based veri-
fication. Table 1 lists the number of initial hypotheses (those fulfilling the proximity criterion),
the number of hypotheses surviving the refinement step and the number of final 3D points after
image-based verification. The last column lists the execution times on a 2GHz AMD Athlon
XP.
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Figure 6: Top row: Three of the five images used of the synthetic turntable scene of a house
(image size= 1000× 750). Bottom row: Three views of resulting 3D point cloud.

4 Conclusions and Future Work

We presented a method for the fast computation of sparse 3D point sets from multiple oriented
images. The main contribution is the introduction of distance transform for the accurate mea-
surement of the re-projection error and the image-based outlier detection. This combination of
feature-based constraints and an image-based similarity criterion allows a robust and efficient
generation and verification of 3D hypotheses. Future work will include an analysis of the accu-
racy of the 3D hypotheses using synthetic data sets. We also want to investigate the influence
of the size of the support region on the performance of the image-based similarity measure.
So far we are only using gray-scale images, but the use of color images seems promising. The
integration of color features could be implemented by expanding the orientation histogram to
a more complex feature vector.
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Figure 7: Top row: Three of the five images of the courtyard scene (image size = 2160× 1440)
Bottom row: Three views of the resulting 3D point cloud.
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Figure 8: Top row: Three of the five statue images (image size = 2032× 1352). Bottom row:
Three views of the resulting 3D point cloud.
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