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Abstract

We propose a novel algorithmic framework for the refinement of sparse 3D models using
shape from shading. Starting from an initial model obtained by shape from stereo we
use a global optimization scheme in order to refine the surface. The constraints we use
are based on the shading in the image, the initial 3D points obtained by stereo and the
smoothness of the surface. In contrast to many previous approaches that assume that the
photometric properties of the scene are known we iteratively update the light source direc-
tion and several parameters of the reflectance map. A careful choice of several boundary
conditions on the reflectance map, the use of a multigrid scheme, the discretization of the
object on a pseudo-hexagonal grid and the frequent switching between different refine-
ment modules allows us to optimize the highly underconstrained problem. We provide
results on synthetic data and reconstruction examples of frieze parts from an excavation
site in Sagalassos (Turkey).

1 Introduction

The reconstruction of archaeological finds has become an important part of recording and
conserving cultural heritage [10] [7] [15]. If the objects can be transported to a laboratory they
are usually reconstructed using structured light [16] or laser scanning methods [15] that lead
to results of high accuracy. If the objects can or shall not be removed from an archaeological
site stereoscopic methods such as shape from stereo [7] and video [11] are usually preferred.
These methods however have the disadvantage that the accuracy is often limited since many
archaeological finds are rather textureless and the correspondence problem becomes tough.
In order to overcome the problems of stereoscopic methods we propose to combine them
with shape from shading (SfS) [8] which is a reconstruction method that estimates the surface
normals and hence the shape of an object from the shading information in a single image.
Although this method is too under-constrained to be used for a stand-alone reconstruction, it is



well-suited for the refinement of rough initial models, especially in regions where the albedo
of the object is almost constant (those regions where stereo has the most problems).

Since the invention of SfS three decades ago a large amount of different single SfS meth-
ods and several integrations of shape from shading and shape from stereo have been proposed.
Although most of them work quite well for synthetic objects the amount of real world applica-
tions is rather limited which is mainly due to the fact that the reflectance properties and the light
source directions have to be perfectly known in order to lead to good results. In order to apply
our method to real images of archaeological objects we thus propose an approach that solves
for shape, light source direction and various parameters of a reflectance map simultaneously.

As proposed in [6] we formulate the problem as a global minimization problem and build a
framework that frequently switches between the refinement of the shape and the refinement of
the photometric properties. This is done within a multigrid scheme that discretizes the model
on a pseudo-hexagonal grid. Additionally we reproject the perspective images to orthographic
images using the initial 3D models in order to simplify the energy minimization.

We first give an overview of our framework in Sect. 2. Afterwards we discuss the estima-
tion of the reflectance map and the light direction in Sect. 3. Sect. 4 contains the details of
our integrated reconstruction scheme based on stereoscopic and shading constraints. We con-
tinue with results on synthetic images and real datasets from the excavation site of Sagalassos
(Turkey) in Sect. 5 and conclude with ideas for further research.

2 Overview

In this section we give an overview of our algorithmic framework and compare it with existing
approaches that use an integration of stereo and shading in order to reconstruct light conditions,
reflectance properties and shape of a scene.

Early approaches that reconstruct shape, light direction and the constant albedo of the
surface are found in [20, 13, 6], which use only an initial stereo model and the image to cal-
culate the light direction. A method that does not consider the estimation of the light direction
but searches for shape and a two-dimensional polynomial model of the reflectance map has
been proposed in [9]. Lange [12] has proposed an integrated framework using various loosely
coupled modules and models the light direction and various parameters of Phong's reflection
model. His experiments however use stereo pairs under different light conditions that are not
available in the traditional shape from shading problem. Recently lots of work in this field has
been done by Samaras and Metaxas [17, 18], who proposed an algorithmic framework for the
integration of shape from stereo and shape from shading using deformable models [17] and
presented a shading algorithm that iteratively refines the light source direction and the shape
of the surface. Additionally, they correctly model perspective projection which has also been
addressed by [6, 12, 14].

As proposed in [18] we also iteratively refine the reflectance map and the shape of the
surface since the rough initial light and reflectance map estimate that can be obtained from
the initial stereo model is not accurate enough. The main differences between their and our
approach are different optimization methods, a different energy function and a different dis-
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Figure 1: The workflow of our integrated algorithm

cretization of the object. An additional contribution is our introduction of boundary conditions
for the optimization of the reflectance map estimation that make the estimation more robust.
Our algorithmic framework is depicted in Fig. 1. We start with several stereoscopic images
and reconstruct an initial model using a standard shape from stereo method [10]. In order
to simplify the integrated reconstruction equations we orthographically retransform the input
images and the initial models. We are aware that this leads to errors in the input images
since the rough stereo model is used for the transformation. However we currently work on a
modification that uses correct perspective projection between the surface model and the images
as proposed by Fua [6]. Afterwards the main reconstruction starts which iteratively switches
between the refinement of the reflectance map and the light direction and the refinement of
the surface shape. Although shape, reflectance and light direction could also be optimized at
the same time, we chose to separate the processes as in [18]. This allows to separate between
the optimization of global features such as the reflectance model and local features such as the
shape and makes it possible to use appropriate optimization methods for each subproblem. In
order to reduce the amount of data for visualization we perform adaptive triangulation after the
final shape has been estimated by removing triangles in flat regions. Finally we retransform
the model based on the perspective projection model.

3 Estimating the Reflectance Map and the Light Source Di-
rection

In this section we derive a robust model for the nonlinear problem of estimating the light
direction/ and the parameters of the reflectance migp) wherea is the angle between sur-

face normal and light direction. The light direction is modelled via spherical coordinates as

[ = (sin ¢ cos,sin ¢ sin b, cos ¢) which ensures the unit length conditigfi| = 1 automat-

ically. We use the Lambertian reflectance map because it is a reasonable assumption for the
archaeological objects we are interested in, however the algorithm could be easily extended to



more complex rotationally symmetric reflectance m&yps).

Our experiments have shown that the shape from shading problem with unknown light
direction and reflectance properties is too ill-posed and therefore tends to produce reflectance
maps that are too flat. Thus we propose the following novel reflectance model that imposes
two additional boundary conditions on the reflectance map and prevents the optimization from
converging to the wrong solutions:

- oz
R) = ¢ o 0=t
R(F) - pla—3) a>3
R(a) = ¢ +Ecosa
1
SDC — Constraint R(g) < §R(O)

RUB — Constraint : R(0) < 255

By means of the quadratic coefficiefjtwe ensure thaR(«) is a monotonic decreasing func-

tion in the intervald < o < 7, while the SDC-Constraint assures that the function decreases
at least to the half of2(0) within the interval. Additionally, the RUB-Constraint ensures that
R(a) is always less than the maximum intensity value 255 and cannot leave the valid range. For
anglesa > 7 which belong to shadowed areas the reflectance Riap is almost constant.
However, we introduce a small linearly decreasing term which improves the convergence prop-
erties and avoids that the algorithm gets stuck in a saddle point. Although some constraints
are rather specific to our application (e.g. the SDC constraint) they can be easily adapted to
other situations and allow convergence of the optimization for shape, reflectance map and light
source that is often not possible otherwise.

In order to use the inequalities within our optimization framework we first transform them
to equations. An inequality(z) < 0 is transformed into an equatiof{z) + s> = 0 by
introducing a slack variablethat has to be additionally optimized. Afterwards the equations
are traditionally transformed into additional constraints of the energy function.

Finally we arrive at a nonlinear optimization problem for the unknown parameters of the re-
flectance modet,, 5, ¢, 0 plus slack variables;, s,. We solve it using the BFGS-method [4]
which is a fast and robust Quasi-Newton-method for nonlinear optimization and achieves good
convergence rates by approximating the inverse of the Hessian matrix (matrix of second deriva-
tives) of the energy function.

4 Integrated Reconstruction

In the past various methods have been proposed to integrate stereo and shading clues. Several
approaches use the stereo information only as an initial condition [13], some reconstruct two
models separately and fuse them afterwards using various filter techniques [1] and others en-
force the low-frequency information of an initial stereo model during each step of an iterative
shading algorithm [5] by operation in the Fourier domain.

Based on a recent survey of different shape from shading methods [19] we have chosen to
use a variational approach that tries to minimize a global energy function containing stereo,



shading and regularization constraints. This approach avoids artifacts that appear when using
filtering methods in the frequency domain while enforcing low-frequency information during
the refinement which is usually lost by pure SfS algorithms.
The reconstruction is done by minimizing a global energy funafiamhich is the weighted
sum of three terms
C =wpCp + wsrCsr + wsCl. (2)

whereC’ is the brigthness term from the image irradiance equation(f8},is a stereo term
that prevents the loss of low frequency information éafids a smoothness term for the stabi-
lization of the algorithm. The first term has the form

Cp =Y (I(z,y) = R(a(z,y)))*. (2)

(z,y)

where R(a(x,y)) is the normalized reflectance mafyz, y) is the grey value of the image
anda(z, y) is the angle between the direction of the light source and the normal vector of the
surface at position (x,y). The stereo term is of the form

Csr = Z(Zk - dk)z. (3)

k

whered,, represents the height value of the model obtained by shape from sterepiaride
corresponding height value of the current model.

In order to avoid artifacts during the calculation of surface normals and smoothness terms
we use a pseudo-hexagonal grid that is not pixel centered and is basically obtained by shifting
each second row of the grid by half a pixel. Consequently our smoothness does not depend on
four but on six neighboring gridpoints,..z ¢

Cg = Z(sz — Za—20)? + (22 — 2 — 20)? + (225 — 2 — Zf)z. (4)
%

wherez;, is the height of the current gridpoint and the pointsz; are clockwise ordered. The

term serves a dual purpose. First it ‘convexifies’ the energy functional which improves the
convergence properties of the optimization procedure. Second, in the presence of noise, some
amount of smoothing is required to prevent the mesh from over-fitting the data and excessively
wrinkling the surface.

The optimization of the energy function is done using the conjugate gradient method [3] [6]
which has proven to be suitable for large scale optimization problems such as shape from
shading. In order to assure faster convergence and to avoid getting stuck in local minima too
early we use a multigrid scheme that starts at a low resolution and increases the resolution
till the final resolution of one model point per pixel is reached. Additionally, we use the
continuation method as proposed by [13] which means that at each gridlevel we start with a
high smoothness weight in order to avoid immediate overfitting of the data and decrease the
smoothness weight as the computation goes on to allow a good reconstruction of discontinuity
edges. The weights g, wsr andwg in the energy function are normalized with respect to



gradients of the corresponding constraints which makes them rather independent of the size
and contents of the images.

This is similar to [6] also using a hexagonal grid and conjugate gradient descent for min-
imization. In contrast to them we do not use a stereo correlation term but a term that directly
enforces the values of the initial stereo model which leaded to more robust results for our
datasets.

5 Results

In the following we first apply our algorithm to a synthetic dataset with known ground truth
and reflectance properties in order to show that the algorithm is able to estimate light source
direction, reflectance parameters and 3D shape. Afterwards we provide an example using a
real data set and show the applicability of our algorithm to real scenes of archaeological finds
with almost uniform albedo.

5.1 Synthetic Data

For our synthetic experiment we used the well-known Mozart statue provided by the University
of Central Florida [19]. The model was illuminated from the directidnl, 2) assuming
Lambertian reflectance and rendered to an imag®efx 256 pixels as shown in Fig. 2a. In
order to simulate the result of a shape from stereo - algorithm we created our intial 3D model
(Fig. 2c and e) by tiling the provided ground truth into trianglestof 4 pixel and adding
evenly distributed z-noise af5% of the total object height to the triangle nodes. We applied
our SfS algorithm three times to this initial model using different initial light positions which
were35°, 73° and105° away from the correct light position. The initial Lambertian reflectance
model is shown in the grey curve at the top of Fig. 2b.

In Table 1 different initial and final errors are summarized for the three experimental runs.
The almost identical results show that our approach is rather insensitive to the initial position
of the light source. Each time the differenge!;,,; between the correct and final estimated
angle of the light source was abaut°. Additionally, we have measured the mean ety
between the correct and the final reflectance map which always is below 5 grey levels. The
mean brightness errdtz between the input image and an image generated using the final
model and the final reflectance properties was also only about 5 grey levels for each run.

In Fig. 2d and f the results of the algorithm for the initial light position errof7&f are
visualized which show that the combined shading/stereo algorithm achieves a significant im-
provement of the quality of the 3D model. The relative z-error decreasedifrginto 0.5%
and the 3D models are much closer to the ground truth than the initial models. Fig 2b shows
two histograms where the-axis corresponds to the anglec [0, 7] between the surface nor-
mal of an object point and the light source and ghaxis to the grey value € [0, 255] in the
input image. The top histogram corresponds to the initial model and the bottom histogram to
the final model. It shows the good correlation between angles and grey values for the final
model. The estimated reflectance map is drawn into the histogram images as a grey curve.
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Figure 2: Reconstruction results for the synthetic object 'Mozart: a) Input image. b) Top:
initial reflectance map. Bottom: final estimated reflectance map (details are given in the text)
c) e) Initial 3D model obtained by subsampling the ground truth and addingeight noise.

d) f) Final reconstructed 3D model.

EA; EZ(%) ER/(GV) EB/GV)| EAp(%) EZp(%) ERp(GV) EBgp(GV)

35° 1.7 49.8 59 2.7° 0.5 4.7 5.1
73° 1.7 49.8 90.5 2.7° 0.5 5 5.2
105° 1.7 49.8 112.9 2.8° 0.6 4.8 5

Table 1: Reconstruction results for the synthetic object 'MozakitA is the angular differ-

ence between the correct light source direction and the initial (I) and final (F) light source
direction, respectivelyEZ is the mean relative height error 9. E'R is the mean error in
greyvalues between the correct and the initial/final reflectance map &nd the mean error

in greylevels between the input image and the image generated using the initial/final model
and the corresponding reflectance map.

5.2 Real Data

We evaluated our algorithm on various real data sets from the archaeological excavation site in
Sagalassos (Turkey) and present the reconstruction results for a stone frieze shown in Fig. 3a.
The initial 3D model (Fig. 3e) was obtained using a standard stereo-matching algorithm on
four input images [10] and shows a good approximation of the overall shape while lacking



Figure 3: Reconstruction results for the stone frieze: a) Input image. b) Synthetic image
generated using the final 3D model, the estimated light source and the estimated reflectance
map. c) The initial reflectance map (top) and the final reflectance map (bottom). d) The final
reflectance map if the SDC constraint is not used. e) The initial 3D model obtained by shape
from stereo. f) The final refined 3D model.

small surface details. The final model after the refinement with SfS is visualized in Fig. 3f and
shows the ability of the algorithm to reconstruct the high frequency components of the object.
A synthetic image generated using the final model and the estimated reflectance parameters
is shown in Fig. 3b, which is very close to the input imageé2 x 592pizel) and shows

that the algorithm is able to decrease the brightness error sufficiently. On top of Fig. 3c the
initial reflectance map and the (angle,greyvalue)-histogram for the initial model and reflectance
parameters is visualized. The final reflectance map at the bottom of Fig. 3c approximates the
histogram much better and shows that the assumption of a Lambertian reflectance model is
justified. When we turn off the SDC-Constraint of our reflectance map the reflectance map
does not converge to the correct solution as visualized in Fig. 3d which demonstrates the



necessity of this constraint.
In total the method has been evaluated on six different statues with the same set of param-
eters and for all datasets converged to visually correct results.

6 Conclusions and Future Work

We have proposed a new algorithm that allows to refine initial sparse and noisy 3D models
using shading information of a single image. As shown in Section 5 the algorithm is able to
reconstruct not only the shape but also the source of the light direction and the parameters of
the Lambertian reflectance model. This use of shading information is especially valuable for
various archaeological finds that usually have quite uniform albedo and allows a significant
qualitative and quantitative improvement of an initial 3D model. During our experimental
evaluation we have seen that some aspects of the algorithm are especially important. These
include the use of boundary conditions for the reflectance map, a very frequent iteration be-
tween the surface model and the reflectance map and the use of a multigrid scheme during the
optimization. A slightly modified version of the algorithm has also been applied to images
from a scanning electron microscope [2], which shows its applicability to problems with very
different reflectance characteristics.

There are two main limitations we want to address in the future. One is to proper model
perspective projection during the reconstruction process which is currently done by initially
rectifying the input images based on the initial 3D models. The second important aspect is to
think about ways how to handle shadowed areas more specifically.
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