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ABSTRACT

Computer-aided analysis of four-dimensional tomography data plays an increasingly vital role in the diagnosis
and treatment of heart function deficiencies. A key task for understanding the dynamics involved within a
recorded cardiac cycle is to segment the acquired data to identify objects of interest, like the heart muscle (or
myocardium) and the left ventricle.

In this paper, a new robust and fast semi-automatic algorithm for segmentation of the myocardium from a
CT data set is presented. The user marks the myocardium by placing a poly-line onto one slice of the data
volume. This poly-line forms a skeleton representing the cross-section of the myocardium on this slice. This
skeleton is then automatically propagated and adjusted to the other slices in order to create a skeleton of the
entire heart muscle. Then a cost function is applied, which calculates for each voxel the cost of the cheapest
path from the voxel to the skeleton, with the cost of a path being determined by its length and the data it passes
through. The boundaries of the myocardium can then be extracted as an iso-surface in the volume generated by
this cost function.
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1. INTRODUCTION

With the introduction of four-dimensional tomographic imaging techniques, it has become possible to evaluate
important properties of a patient’s heart function by generating images at a number of time points distributed
over one cardiac circle. Abnormalities in myocardial motion, which can indicate deficits in blood perfusion, can
be extracted by analyzing the resulting image sequence. Interest of cardiologists is usually focussed on the heart
muscle (myocardium). It encloses the left ventricle (LV) of the heart and, by contracting and expanding, makes
blood diffuse out of the ventricle into the entire body. Properties of the myocardium and the LV as a function
of both time and space reflect the state of the patient’s cardiac system very well. Crucial properties include the
change of myocardial wall thickness over time as well as the volume of the blood perfused during one cardiac
cycle. Image segmentation is an important sub-task in the process of computer-aided analysis and assessment
of cardiac activity. Objects of interest (here: the myocardium and the LV) must be identified and segmented
within each 3D volume in order to be able to exract properties of their motion. Since a correct segmentation
of the myocardium leads to trivial segmentation of the LV, which is simply the interior of the heart muscle, the
important first step in the automatic or semi-automatic processing of 4D cardiac tomography data is to segment
the myocardium.

Both Magnetic Resonance Imaging (MRI) and Computer Tomography (CT) are widely used to acquire 4D
cardiac data. Both have their advantages and disadvantages. The most significant advantage of MRI in cardiac
imaging is that MRI scanners expose the patients solely to magnetic fields instead of radiation, while a CT
scanner uses x-ray for data aquisition and thus imposes some risk to the patient’s health. On the other hand,
CT can generate images of higher quality: Recent developments in the area of Computer Tomography allow for
ultra-fast high quality scanning at high resolutions. Electronic Beam Computer Tomography (EBCT), a very
fast CT-based method was introduced in 1984. However, the high cost of the systems limits its availability to
relatively few sites. Multi-Slice Computer Tomography (MSCT) was developed in 1998.1 Multi-slice technology
accelerates the scanning process by simultaneously acquiring 4 (or, since recently, even 16) slices. Therefore
it became possible to generate 4D CT images of high quality, which are highly resolved in all three spatial
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dimensions and the time dimension. This is currently not possible with MRI. The better quality of CT images,
compared to MRI scans, allows for a higher level of accuracy in image segmentation, which can be crucial for
the task of analysis of cardiac function.

This paper deals with segmentation of the myocardium from a three-dimensional CT scan. Section 2 presents
previous approaches. Section 3 describes the new technique, skeleton-based myocardium segmentation.

2. RELATED WORK

Myocardium segmentation techniques mostly work in a semi-automatic fashion: Approaches with a high level
of interactivity include the intelligent scissors and live-wire? 3 techniques. Here, the user specifies points of
the boundary, which are then automatically connected by the segmentation algorithm. Sometimes, only simple
segmentation techniques, like, for instance, thresholding and object extraction using mathematical morphology,
are applied and the results are manually edited.* However, in order to increase the efficiency in the radiologists’
work, manual interaction in the segmentation process is required to be minimized. The most widely used methods
for myocardium segmentation are deformable model techniques®: A deformable boundary is initialized and, by
applying a set of different forces, aligned to significant gradients in the image. However, often those techniques
require the initialized boundary being very close to the final expected result, which often increases the level
manual interaction. Popular deformable models include, for instance, energy-minimizing splines called snakes.5
Methods used to initialize and refine deformable models are still subject to research: Jones and Metaxas” use
pixel-affinity (a measure of probability that two neighboring pixels belong to the same object) and balloon
forces® to initialize a deformable model. The LV boundary is initialized in the middle of the LV and iteratively
enlarged into all directions until pixels of low affinity are reached. The problem is that noise and papillary
muscles (small muscles inside the LV) might lead to bad initialization. Chakraborty and Duncan introduced
an approach to refine an initialized boundary by methods based on game theory.® This technique attempts to
combine both region-based and boundary-based segmentation to achieve to best possible results. Two modules,
or 'players’, with different strategies, one region-based, the other boundary-based work in a coordinated fashion
towards the common goal, the correct object segmentation. Techniques have been proposed, which segment the
LV and in each slice initialize the outer boundary of the myocardium (the epicardium) as a shape similar to
the boundary of the LV (the endocardium) and then refine this estimation to better fit the data,'® using a
deformable model. Usually these techniques miss a significant part of the myocardium, since not every slice that
intersects the myocardium also intersects the LV. In recent years, methods have been proposed, which perform
automatic segmentation of the heart based on atlases.!! Data sets acquired from a number of patients or
volunteers form a training set. They are abstracted to common features which are collected to an atlas and aid
the automatic segmentation of new data sets. Research in this area, however, is still young. Current systems are
either restricted to 2D images or have trouble segmenting data sets where structures are significantly different to
those encountered in the training set. An interesting atlas-based technique that robustly segments the LV is the
deformable template method by Rueckert and Burger.'?> Here, the concept of deformable models is enriched by
using atlas-based a-priori knowledge about the shapes of 2D cross-sections of the ventricle. Another technique for
fully automatic segmentation has been proposed by Spreeuwers and Breeuwer.'®> The myocardium boundaries
in MR cardio perfusion scans are detected by exploiting changes in the relation of contrast agent concentration
between the myocardium and surrounding tissue over time. This technique, however, can only be applied to
MRI data. Also the use of methods from artificial intelligence has been attempted. Drobics et al. report
promising results of experiments employing Self-Organizing Maps (SOM) to segmentation of the myocardium in
CT scans.'* Currently, however, segmentation results have to be manually improved.

3. SKELTON-BASED MYOCARDIUM SEGMENTATION

This section describes the new algorithm for myocardium segmentation from a 3D cardiac data-set. The basic
structure of the technique is outlined in figure 1 From the figure can be seen that a large part of the algorithm
(steps 1 through 6) is performed in 2D space on a slice-per-slice basis. Ounly steps 7 through 10 are done in
3D. The 2D part of the algorithm is aimed at finding out, which slices of the volume intersect the myocardium
and marking the myocardial cross-sections on those slices by center lines. The algorithm is initiated by the user
by selecting a slice and manually placing a poly-line (the 2D skeleton) on it, which approximates the center
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Figure 1. Skeleton-Based Myocardium Segmentation: algorithm overview

line of the myocardial cross-section on the slice (step 1). This skeleton is then automatically propagated to the
other slices (steps 2,3,4,5 and 6). Then the 3D part of the algorithm is started. The collected 2D skeletons are
combined to a 3D skeleton of the heart muscle (step 7). Then each voxel in the data set is assigned a cost value
denoting the cost of the cheapest path from the voxel to the skeleton (steps 8 and 9). Thresholding within the
resulting volume of cost values yields the final segmentation result (step 10). The 10 steps are described in more
detail in the following paragraphs:

3.1. Step 1: Manual Marking

This part of the algorithm is the only part which requires user interaction. In the first step the user selects a slice
of the data set and marks the cross-section of the myocardium in this slice by manually approximating its center
line. This is done by setting a number of representative ”skeleton knots” which are then automatically connected
by lines to form a skeleton of the myocardial cross-section in the current slice. Since this step influences the
complete segmentation algorithm, the skeleton should be a sound representation of the myocardial cross-section
in the selected slice and should be placed such that it is entirely located inside the myocardium. An example
skeleton is depicted in the leftmost image of figure 3. Here 14 skeleton points were manually placed. Usually,
this user-interaction part of the algorithm takes less than 30 seconds.

3.2. Skeleton Propagation

After the skeleton has been placed, the automatic propagation-algorithm (steps 2 through 6) is initiated. Due
to the high spatial resolution of CT images, there is a big amount of inter-slice coherency. This means that
a skeleton representing a myocardial cross-section well in one slice is usually also a good representation of the
myocardial cross-section in each of the two neighboring slices. Thus, a skeleton can be propagated from one
slice (then source slice) to another (the destination slice) by first refining it to give a better representation of
the cross-section of the myocardial cross-section in the source slice and then copying it to the destination slice.
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Figure 2. missing gradients (left), robust boundary point estimation (right)

Refinement itself consists of the following steps: First, preliminary boundaries of the myocardial cross-section
in the source slice are found (steps 2 and 3), then the skeleton is centered by placing it halfway between those
preliminary boundaries (step 4). After that a crucial maintenance process is applied to the skeleton in order to
further ensure stable propagation (step 5). Finally the skeleton can be copied to the neighboring slice.

3.2.1. Step 2: Data Analysis

In order to be able to approximate the boundaries of the myocardial cross-section, statistical data about the
distribution of data values representing the heart muscle are extracted. The average values (Ei and Eg) and
standard deviations (S and Sg) both for data values and gradient sizes are calculated by taking evenly spaced
samples all over the skeleton.

3.2.2. Step 3: Boundary Estimation

The statistical properties calculated in step 2 are used for estimating boundary points. For each skeleton knot k;,
a primaryvector v which is parallel to the current slice and normal to the line connecting the currently processed
skeleton knot’s immediate neighbors k;_; and k;y; is calculated. Now, starting from the skeleton knot, data
samples are taken in direction of v. The distance between samples is equal to the sampling distance used in the
data analysis step. As soon as data values and/or gradients are encountered, which diverge significantly from the
calculated average values (with respect to the standard deviations) the algorithm assumes that a boundary point
has been found. The formulas that are used to decide whether a point is located on the boundary are closely
related to the pixel-affinity model proposed by Udupa'® and Jones”: Let S, Ss, ..., Sg be the intensity values at
6 successive sample locations, and E;, E4, S; and S, the values calculated in step 2. Then the probability of the
boundary being located between S3 and Sy is indirectly proportional to the value u with:

u=k-hi+(1—k) hy, (1)
where h; takes into account the deviations of the sampled values from FE;, with:

_((1—E;)/8;)? _(va—E;)/8:)?

hy = em RS (1 o ) (2)
and hg takes into account the deviation of the encountered gradient from Fg, with:
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Figure 3. manually drawn skeleton (left), estimated boundaries (middle) and centered skeleton (right)

V1 and V5 are the results of low-pass filtering the sampled values in order to tolerate some level of noise:
Vi = (S1 4252+ 553)/8 and Vo = (Sg + 255 + 554)/8. Coefficient k, with 0 < k < 1 controls the weighting of
the intensity- and gradient-related terms and can be adapted to the properties of the data. A boundary point is
assumed to be found, if u is below a certain threshold T. Good results are achieved with 7" = 0.1. Not all parts
of the myocardial boundary are well recognizable by a significant change of intensity (see left image in figure 2),
especially boundaries between the myocardium and other muscles such as papillary muscles. A sampling process
as described above might encounter a gradient too late, already well inside neighboring tissue. So, in order to
increase stability, the process of boundary-point detection is repeated n times, using n different sampling vectors
evenly distributed within an angle of 30 degrees around v (see figure). Out of the resulting n potential boundary
points, those m (in the current implementation, n is 11 and m is 3) points, which are closest to the currently
processed skeleton point, are selected. The final boundary point is then calculated by averaging these m points.
Another boundary point is then searched in the opposite direction (-v).

3.2.3. step 4: Skeleton Centering

The preliminary boundaries found in step 3 are used to center the skeleton in order to make it a better repre-
sentation of the myocardial cross-section in the current slice. The result of step 3 is a set of 2p boundary points,
with p being the number of skeleton points. In step 4, each skeleton point is moved to the exact center between
two opposite boundary points. The result can be seen in the rightmost image of figure 3.

3.2.4. step 5: Adaptation of Skeleton Length

A skeleton must have the correct length in order to provide a sound representation of the underlying myocardial
cross-section. Thus, during skeleton propagation, it is important to check in each slice whether the skeleton
has to be extended or shortened. Figure .. shows examples for a too short skeleton, a too long skeleton and
a skeleton of correct length. A skeleton, defined by the knots (ko, k1, ..., kn—1) and consisting of the segments
(50,1581,2, --s Sn—2,n—1) With s; ; being the segment between the knots k; and k;, is assumed to be too long, if, for
a given 0 < m < n — 2 all segments (80,1, ..., Sm,m+1), O (Sm,m+1,---s Sn—2,n—1), traverse data values that signif-
icantly diverge from the statistical data collected in step 2. In that case, knots (ko, ..., km), O (Kmg1s - kn—1),
are removed from the skeleton. The algorithm used to extend a too short skeleton is illustrated in figure ...: A
boundary point py is searched from knot k¢ using the method described in section 3.2.2 with the primary vector
v being parallel to the vector from knot k1 to knot k. For further processing, point pg is moved slightly away
from the boundary, using for instance: py = ko + 0.85 x (po — ko). A potential new skeleton knot n can then be
detected by centering pj,: Boundary points p; and p, are searched using vector v' with v’ being orthogonal to v
and —v’, respectively, as primary vectors and p{ as origin. The new knot n is the center point between p; and
p2. Then, another boundary point, ps is searched using ko as the origin and a primary vector parallel to the
vector from knot kg to n. If the distance between kg and p3 exceeds a predefined threshold, knot n is added to
the skeleton and the complete operation is repeated (with kg now being the new found n) iteratively until the
boundary point p3 is close enough to the skeleton. Analogous computation is performed at the other end of the
skeleton.
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Figure 4. extension of a too short skeleton

3.2.5. step 5: Skeleton Maintenance

A very important sub-task of skeleton propagation is to enforce constraints on the development of the skeleton in
order to keep it in shape for further stable propagation. Certain properties of the skeleton must be watched and
controlled in every slice to better adapt it to the cross-section of the heart muscle in each slice. One trivial but
still very important point is to watch the order of skeleton knots, since it is desireable to prevent self-intersections
of the skeleton, which could cause its further development become chaotic. Furthermore, skeleton knots might
have to be added or removed in order to prevent too long or too short distances between neighboring skeleton
knots. Also some less trivial measures have to be applied, which will be explained in the following paragraphs:

Adaptation of Skeleton Geometry The geometry of the skeleton must reflect the geometry of the underlying
myocardial cross-section well. So, if the geometry of the cross-section changes, the geometry of the skeleton must
do so too. Among all slices of the volume, there are always some slices whose intersection with the myocardium
has a circular (closed) shape and some where this is not the case, regardless of the oprientation of the slices. If
during the propagation of the skeleton, the shape of the myocardial cross-section changes from non-circular to
circular, the skeleton must be closed as well. The check that has to be performed is simple: The skeleton has to
be closed, if step 4 has led to self-intersection of the skeleton or there is a path from the first to the last skeleton
knot which does not traverse any data values which statistically significantly differ from usual myocardium data,
as derived in step 2.

Skeleton-Segment Improvement After the skeleton has been centered, the probability that it is entirely
located on the cross-section of the heart-muscle is high. However, there is still the possibility that, although all
skeleton knots are located on the myocardial cross-section, one or more skeleton segments partly move through
voxel data not representing the heart muscle. This causes problems, since all voxels being part of the skeleton
will be part of the final segmented object. Also, a skeleton segment traveling through tissue other than the
myocardium will have a negative impact on the correctness of the statistical data calculated in step 2. Thus,
such segments have to be identified and replaced. Identification is straightforward: Each segment of the skeleton
is sampled for data values unlikely to represent a part of the myocardium. Once a problematic segment is
identified, it is replaced by two segments, using the following algorithm: Let s be the problematic segment of
the skeleton connecting the skeleton knots kg and ki, F; the average data value of the skeleton and S; the
standard deviation of skeleton data values. Now, a path is searched from knot kg to knot ky, which traverses
only myocardium voxels. The two segments replacing s will be separated by a knot located exactly half way on
the identified path.

An initially empty sorted list of voxels is initialized. Each voxel is assigned a cost and a distance value, both
initially 0. In the list, voxels are sorted by the cost value, the voxel with lowest cost being first in the list.



Figure 5. skeleton outside myocardium (middle), skeleton restricted (right))

The voxel containing knot kg is first added to the sorted list. Then the following steps are performed
iteratively:

1. Take the first voxel with cost ¢ and distance d from the list.

2. Add each immediate neighbor voxel, which has not been assigned a cost value other than 0 yet, to the
sorted list and assign distance d’ = d + 1 and cost ¢’ to the neighbor voxel with:

_((w—Ey)/8y)?
d=c+1—e! 3 ),

(4)
with v being the data value at the neighbor voxel.
3. If one of the neighbor voxels contains the skeleton knot k1, stop the iteration.

4. return to 1.

A new skeleton knot n is then initialized at the position of k1 and iteratively moved into the direction of
decreasing distance values until a voxel has been reached whose distance value is about half the distance value
of the voxel containing k;. Finally, n is centered. The skeleton segment s is then replaced by two new segments
which are separated by the new skeleton knot n.

3.2.6. Coping with missing gradients

Often, tissues surrounding the myocardium are of very similar intensity as the heart muscle. Therefore, usually,
some parts of the myocardial boundary are not well recognizable even by the human eye (see figure 5, left image).
In some slices, the algorithm as described so far would have trouble detecting the correct boundaries, since data
sampling as proposed would not encounter any significant gradients and data values significantly diverging from
the myocardial intensity level. Thus, completely wrong preliminary boundary points might be found, leading
to the skeleton, through centering, moving outside the myocardial cross-section (see figure 5). The solution for
this problem is to make use of the high level of inter-slice coherency in CT data sets: The intersections of two
neighboring slices with the myocardial boundary differ only slightly. So, also the skeletons of two neighboring
slices must be similar. Thus significant deviations of the skeleton on the current slice from the skeleton on the
previously processed slice must be recognized and corrected. There are various ways to do this:

One possibility is to 'peer into the future’. As was already pointed out, the most important goal of skeleton
maintenance is to make sure that it will, when copied to the next slice, still be located on the myocardium. So,
if S¢ is the slice currently processed and propagation is in direction of increasing slice number, movement of
a skeleton knot could be restricted to a (two-dimensional) connected region whose voxel values conform to the
statistical data from step 2 on all slices from S. up to Sc4;. The value 4 is not fixed, but adapted depending
on the situation. So, for instance, if the region of possible skeleton knot destinations is still large enough after
checkin S.;, then ¢ can be chosen to be higher than j. The center image in Figure 5 shows a skeleton which is
partly outside the myocardium. The right image shows the skeleton whose movement has been restricted.



Figure 6. 3D skeleton of a myocardium (left) and final segmentation result (right), viewed from two different angles

Another possibility is to prevent a skeleton knot from moving too close towards the preliminary boundaries
identified on the previously processed slice (S.—1). The idea is to leave as much space between the skeleton knot
and the boundary as the boundary is likely to travel between slice S._; and S.;1;. The problem is that this
technique is, of course, based on assumptions about inter-slice coherency. Thus the first proposed method seems
to be the more stable one.

A very simple and still stable method is to compare the distance d; between the centered skeleton knot k; and
the outer preliminary boundary on slice S._; and the distance ds between the knot and the outer preliminary
boundary on S.. If ds is significantly larger than dy, i.e., if do/dy > T for a given threshold 7', the skeleton knot
is discarded and replaced by a new knot n searched between k;_; and k;1 using the algorithm described in the
paragraph about skeleton-segment improvement.

3.3. Final 3D Segmentation

As soon as the 2D skeleton has been propagated to each slice of the data set, which intersects the myocardium, the
3D part of the algorithm is started. First, the 2D skeletons of all slices are combined to form a three-dimensional
skeleton of the myocardium (step 8, see figure 6). Then a volume is generated holding for each voxel a value
denoting the cost of the cheapest path from the voxel to the skeleton (steps 9 and 10). Finally the myocardium
is extracted from this volume using thresholding (step 11). Steps 10 and 11 are explained in more detail in the
following paragraphs:

3.3.1. Step 10: Generation of the Cost Volume

The goal of this step of the algorithm is to assign a value v to each voxel of the data-set, denoting the probability
that the voxel represents a part of the myocardium. Calculation of these cost values is based upon the result of the
skeleton-propagation phase, the three-dimensional skeleton of the myocardium as well as information about the
intensity level of voxels belonging to the myocardium. To obtain the latter, the preliminary boundaries identified
in step 3 can be used: The average intensity value of the voxels located inside those boundaries is calculated
as well as a standard deviation (step 9). Then, for each voxel, the cost value v is obtained by calculating the
minimal cost of a path from the voxel to the skeleton, with the cost of a path being determined by its length and
how significantly the values that it passes through deviate from the statistical values acquired in step 9. The
algorithm used is similar to the one used for skeleton-segment improvement described in section 3.2.4: Again, a
list of voxels is initialized, sorted by cost values assigned to the voxels. Initially, the list holds all skeleton voxels.
Their cost values are, obviously, zero. Then, iteratively, the following steps are performed:

1. The voxel V' with lowest cost is taken from the list. If the cost value of the voxel is higher than a threshold
T, the algorithm is stopped. Threshold T is not equal to the threshold used in step 11. Its only purpose
is to reduce computation time. Let ¢ be the cost value and v the intensity value of voxel V.

2. A new cost value ¢, is calculated for each neighbor voxel of V', using the formula:

_ ((v=E;)/Sp? Cs
2
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with F; and S; describing the statistical distribution of myocardial intensity. The constant values C7, Cs
and Cj3 control the dynamics of cost propagation. C; determines the degree of penalization of path length.
(5 determines the degree of penalization of intensity deviation and C5 controls the steepness of the function
mapping cost increase to intensity deviation. For usual CT images, good results can be achieved by using
the values C7 = 0.03,C5 = 3 and C5 = 2. If the neighbor voxel has not yet been assigned a cost value, or
its cost value is higher than ¢, ¢, is its new cost value.

3. return to 1.

3.3.2. Step 11: Thresholding

The final segmented object is identified by performing thresholding in the volume generated in step 10. Therefore,
the final crucial task is to automatically find a suitable threshold. As already pointed out, not all parts of the
boundary of the myocardium are well recognizable, since surrounding tissue is often at a very similar intensity
level as the heart muscle. Parts of the boundary, which manifest themselves in recognizable intensity gradients
can be easily found by extracting the highest gradients in the cost function. The function mapping to each
possible cost value ¢ the number of voxels with a cost value ¢’ > ¢ usually looks similar to the function depicted
in the left image in figure 7. The changes in steepness are due to the sharp edges mentioned above. Therefore, in
order to best approximate those sharp edges, the threshold should be inside (and possibly near the upper bound
of) the interval of steep decrease of the aforementioned function, similar to the threshold T proposed in figure.

Since radiologists are usually interested in the basic shape of the myocardium and not in every detail of its
surface, it is better to low-pass filter the cost volume before thresholding. In order to keep those boundaries
which have to be estimated due to missing gradients smooth, filtering can be performed adaptively with respect
to gradient sizes.

4. RESULTS

Skeleton-Based Myocardium Segmentation was tested on 15 cardiac CT data-sets of differing quality levels. It
proved to be a robust and accurate technique for myocardium segmentation. Further advantages include little
user interaction and, most important, a high degree of flexibility with respect to the shape and orientation of
the segmented myocardium and with respect to the shapes of myocardial cross-sections. Segmentation of a 3D
volume currently takes about 60 seconds. Figure 8 shows examples of two-dimensional and three-dimensional
segmentation results.

5. CONCLUSION AND FUTURE WORK

Skeleton-Based Myocardium Segmentation, a new technique for segmenting the heart muscle in a CT volume,
was introduced. Although the technique works well, some improvements are desired: Current research focusses
on the extension of the technique to semi-automatic segmentation of four-dimensional data sets. Another possible
improvement would be to further reduce the need for user interaction, possibly even to extend the semi-automatic
technique to a fully automatic one. This would include automatic detection of the LV in one slice followed by
estimation of the myocardial cross-section. Another important matter of future research will be the adaptation
of the algorithm to process also MRI images.



Figure 8. segmentation results
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