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ABSTRACT

In this paper we present a lossless and optionally lossy compression method for precomputed visibility
data for view-dependent multiresolution meshes, which supports out-of-core rendering and progressive
transmission through slow connections. Our approach has the feature, that visibility information can
be stored directly in the nodes of the multiresolution structure and only necessary parts of visibility
data need to be transmitted. Nevertheless our lossless compression method performs better than well-
known general purpose solid compressors which inhibit selective access of required data. Even higher
compression can be achieved when lossy preprocessing is performed. We evaluate our method on several

artificial and real datasets.
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1 INTRODUCTION

In this work we address the efficient encoding
of precomputed visibility data for hierarchical
representations of geometry, especially for view-
dependent multiresolution meshes. Nevertheless
our encoding strategy can be applied to any other
hierarchy based on nested bounding volumes. Our
encoding allows partial transmission of visibility
information as required by the rendering applica-
tion.

Determining visibility of objects can be done ei-
ther at runtime using recent hardware extensions
to test rapidly, whether some part of the scene is
occluded, or in a preprocessing stage. In the later
case the set of (potentially) visible objects for a
region is calculated and stored for use at runtime.
These information is often represented as binary
matrix with a one in row ¢ and column j if the ob-
ject with ID j is potentially visible in view cell 4.
Our method transforms this visiblity matrix into
a more compact representation.

We aim on visualisation of very large 3D models,
which only fit partially into the main memory of
the rendering computer. Therefore we incorporate
visibility preprocessing into our rendering frame-
work to enable selective retrieval of appropriate
parts of the scene geometry from external mem-
ory [Zach02]. Additionally the visibility informa-
tion can be used for run-time occlusion culling on
hardware without accelerated visibility checking
capabilities.

2 RELATED WORK

2.1 View—dependent Multireso-
lution Mesh Generation and
Runtime Management

The seminal papers by Hoppe [Hoppe93],
[Hoppe96] opened the field of continuous level of
detail generation by successive local mesh modi-
fications (for a survey see e.g [Puppo97]). Var-



ious authors proposed a hierarchical intermedi-
ate data structure based on these local mesh up-
dates to obtain a suitable level of detail for run-
time visualization [Xia96], [Hoppe97], [Flori97],
[Luebk97]. The extraction of the displayed mesh
is guided by a refinement criterion, which depends
at least on the current viewing position and direc-
tion, but may utilize e.g. silhouette information
as well [Luebk97].

A bounding volume is associated with every node
in the hierarchical multiresolution structure to
test whether the appropriate part of the mesh
is currently within the viewing frustum. We use
these bounding volumes (bounding boxes in par-
ticular) as occludees in the visibility preprocessing
phase.

Currently we employ mesh simplification using
quadric error metrics [Garla97] to obtain continu-
ous levels of detail, and our runtime visualization
is similar to the approach proposed in [Luebk97].

El-Sana et al. [El-Sa0l] combine viewing param-
eters with approximate visibility information for
selective mesh refinement. Visibility information
is estimated at runtime using a solidity of regions
approach [Kloso99], [Kloso00].

2.2 Visibility Preprocessing

Precalculating visibility requires determination
of visible objects from predefined regions (view
cells). The result of the calculation is a mapping
from view cells to the set of potentially visible ob-
jects (PVS). The essential (and challenging) task
is solving the wisibility from region problem. A
survey of methods for visibility computations is
given in [Duran00] and [Cohen00]. We utilized
software by P. Wonka [Wonka99], [Wonka00] to
calculate the PVS for each view cell.

2.3 Compression of Visibility Data

The size of the precomputed visibility data can
be in the order of the geometric model size, nev-
ertheless there exists rather little literature about
efficient representation of visibility data.

Panne and Stewart [Panne99] proposed a lossless
and optionally lossy encoding of the visibility ma-
trix based on clustering equal (or similar) regions

of the visibility matrix. During the process of
clustering the true entries in the matrix become
sparser. Finally the matrix is represented by the
lengths of the false runs. In their article they re-
ported striking compression ratios: up to 7:1 for
lossless compression and 150:1 for lossy compres-
sion. Their encoding is not suitable for progres-
sive transmission of visibility information. Ad-
ditionally their method is very time consuming,
since the clustering step explores a very large state
space. For these reasons direct application of this
approach to our data sets is not feasible, but we
apply the idea of lossy view cell clustering to en-
hance the compression ratio.

Gotsman et al. [Gotsm99] organize the viewing
space into a BSP like hierarchy and propose a
suitable method of encoding visibility information.
We employ a similar approach (but with a hierar-
chy on the 3D model) as the basis for our progres-
sive coding.

3 OVERVIEW

In this section we give a brief sketch of the ideas
related to our compression scheme. We assume,
that the structure of the hierarchy is known and
needs not to be encoded further. Additionally we
assume, that the geometry of the view cells is al-
ready known to the rendering client. Since the
view cells comprise a triangulated 2.5D height-
field, the corresponding mesh can be efficiently
compressed.

We exploit the following simple observations and
ideas:

e Optional lossy preprocessing. View cells with
similar sets of (potentially) visible objects
can be merged into one new logical view
cell. The idea was already used by Panne
and Stewart [Panne99] and it requires encod-
ing metainformation describing the clustered
view cells.

o Transposed visibility matriz. Usually the vis-
ibility matrix is read in row order: for a given
view cell the visible objects are enumerated.
We encode the set of view cells, in which the
considered object is visible. This set is repre-
sented as a bit vector, the wvisibility bitsets.



o Visibility data coupled with nodes. For ev-
ery node in the multiresolution hierarchy we
store the visibility information of its chil-
dren (if any). Whenever a node is loaded
from external memory, only a small, but rel-
evant fraction of the visibility matrix is re-
trieved as well. We remark that this feature
is very different to most approaches to data
compression, which compress large fractions
of the source data at once. Our approach
has the side-effect, that preloading strate-
gies [Teler01], [Zach02] can utilize visibility
information to guide retrieval of subsequent
nodes from external memory.

e Monotony of visible bitsets. If a node (resp.
its bounding volume) is not visible from a
certain view cell, this is true for all children.
Therefore it is sufficient to encode shortened
visibility bitsets for child nodes [Gotsm99].

e Run length coding. The visibility bitsets of
child nodes comprise a binary matrix, which
is run length coded. Slightly better com-
pression ratios because of longer runs can be
achieved, if the view cells are suitably re-
ordered.

The next section describes the compression of the
visibility matrix in more detail.

4 COMPRESSED VISIBIL-
ITY CODING

4.1 Lossy Preprocessing

The size of the visibility information can be sub-
stantially reduced, if view cells with similar sets of
visible objects are merged and one conservative set
of visible objects is generated for these cells. This
set is just the union of the PVS of the individual
cells.

We choose randomly a set of seed view cells and
select the most similar cell for each of the seed
cells. More formally, if pvs(c;) and pvs(c;) are
the visible sets for view cell ¢; resp. c;, a score
function is defined as

w; [pvs(e;) \ pus(es)| +wj [pus(es) \ pus(e;)] -

The weight w; for view cell ¢; is the number of
cells already accumulated in ¢;. For instance, if ¢;
represents 5 original view cells, that were merged
lossy, losing one occlusion in ¢; means 5 lost oc-
clusion in the original dataset. The initial weights
for original view cells is set to 1.

The pair of view cells, which has the lowest score,
is replaced by one new logical view cell and the
procedure is repeated. Finding the best view
cell for a given seed cell requires a linear search
through the set of cells. We accelerate this search
using an additional index, which is a sorted data
structure mapping the size of the PVS for each
view cell to the corresponding view cell. If the
current seed is ¢ and the best pair at present has
a score equal to s, the candidate cells with a po-
tential lower score have a PVS size in the range
[lpvs(c)| — s, |pvs(c)| + s]. The secondary index
can be used to limit these candidate cells effi-
ciently.

This loop is continued, until the number of lost
occlusions is larger than a given threshold. We
allowed 5% of lost occlusions in our experiments,
which means, if e.g. 80% of objects are hidden
on average in the original visibility dataset, after
lossy preprocessing at least 76% of objects are oc-
cluded. Performing this procedure is optional.

4.2 Reordering of View Cells

For the purpose of determining visibility of objects
from a given view cell the actual numbering of
view cells is of no importance. Since run length
coding in general is sensitive to the order items, it
is rational to permute the columns of the visibility
matrix, such that longer runs are more likely.

We use a greedy approach to perform the reorder-
ing: the view cell, which is most similar (maximiz-
ing the number of objects with the same visibility
status) to the currently last cell is appended next.
This process requires a quadratic number of oper-
ations, but we use a secondary index (similar to
the speed-up technique used for lossy preprocess-
ing) to accelerate this procedure.

Since in many cases the view cell most similar to a
given view cell is some adjacent cell, it can be suf-
ficient to search only the neighbouring cells for the
best match. Thus, the reordering can be achieved



in nearly linear time.

This reordering procedure is again optional.

4.3 Visibility Bitsets

Essentially we encode the sets v(A) of view cells,
from which the given object A (a node in the hi-
erarchy) is visible. The set v(A) is represented as
a bit vector. If node A has 2 children, B and C,
obviously v(B) C v(A) and v(C) C v(A) (since
the bounding volume of A encloses the bounding
volumes of B and C). Therefore it is sufficient
to represent v(B) and v(C) as bit vectors with
length |v(A4)| [Gotsm99]. Figure 1 illustrates this
observation.

4.4 Run-length Coding

The sets v(B;) (resp. the corresponding bit vec-
tors) of children B; of the parent node A are stored
in conjunction with the multiresolution data of A.
The concatenated bit vectors are run-length coded
and a histogram with the lengths is updated. En-
tropy coding of the lengths completes the com-
pression pipeline.

A schematic layout of the node structure is shown
in Figure 2. The node data structure contains ge-
ometric information related to the multiresolution
mesh structure and its layout is similar to the one
proposed in [Luebk97].

Since the bounding volume of the root node con-
tains the complete scene, it is visible from every
view cell and encoding this visibility bitset is not
required.

5 TESTED COMPRESSION
METHODS

We have implemented some variations of the
method described in the previous section. Method
0 omits the run-length coding step and stores
the visibility bit vectors directly. Method 1 ini-
tially stores the intersection of the bitsets N;B;
and encodes v(B;) using |v(A)| — | N; B;| bits.
This method assumes, that successor nodes share
many view cells which have the same visibil-

ity information. These two methods were pro-
posed in [Gotsm99] to encode visibility informa-
tion scenes with a hierarchical view cell structure.
Method 2 is similar to method 1, but the intersec-
tion is now restricted to a suitable subset of child
nodes. The subset S is chosen such that the total
number of encoded bits

| Nies Bil + 18] ([v(A)] = | Nies Bil) + S| [o(A)]

is minimized. Subnodes that belong to S are en-
coded similar to method 1, whereas method 0 is
used for nodes not belonging to S. Additional bits
are required to decide, whether a node belongs to
S. All these methods do not depend on the num-
bering of view cells.

Method 3 is the approach described in Section 4
without lossy preprocessing, but with the initial
reordering of view cells. Method 4 replaces run-
length coding in method 3 by a sparse matrix cod-
ing technique similar to the encoding described
in [Panne99]. Obviously the ones are more likely
in the visibility matrix, therefore we eliminate ze-
ros and store the run-lengths of ones (instead of
the other way round as proposed by Panne and
Stewart). Additionally the lengths are entropy
coded.

We use gzip and bzip2 as general purpose com-
pressors for comparison. These compressors are
applied to the binary visibility matrix in row or-
der. Since these coders work on a byte level, every
new row of the matrix is aligned on a byte bound-
ary, resulting in significantly improved compres-
sion ratios compared to tightly packed matrices.

6 TEST DATASETS

We run the compression methods outlined in Sec-
tion 5 on two artificial and two real datasets. The
important properties of these datasets are sum-
marized in Table 1. The two artifical models were
generated by simulating a dense environment by
placing boxes on a ground plane. The boxes are
located on a jittered regular grid. The bounding
volume hierarchies for the artificial datasets were
obtained using quadtrees to cluster individual ob-
jects and subsequent calculation of tight bounding
boxes for each node. The artificial datasets differ
only in their scene complexity.
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Figure 1: Exploiting the monotony of visibility in the hierarchy. The sets v(B) and v(C) are encoded
using vectors with 8 bits, which is the number of ones in v(A). The empty entries in v(B) and v(C) are

implicitly zero and need not to be stored.

The real models comprise parts of an urban
dataset covering a large fraction of the town of
Graz. The inner city dataset (shown in Figure 3)
covers the historic center of Graz, whereas the
complete dataset consists of the full urban city
model available to us. Nevertheless the complete
dataset has some parts missing, which (in com-
bination with the smaller number of view cells)
results in higher average visibility of objects.

These real-world datasets are preprocessed using
quadric error metric mesh simplification [Garla97]
to generate the multiresolution hierarchy. To
trade off granularity and tree complexity, the re-
sulting binary vertex trees are transformed into
trees, in which every node has 4 children, by col-
lapsing two consecutive levels of the original ver-
tex trees.

The view cells were obtained by cutting out the oc-
cluders (buildings) from the ground plane (for the
artificial dataset) resp. the digital terrain model
(for the real datasets) and subsequent triangula-
tion.

7 RESULTS

We applied several methods to compress the vis-
ibility information for our test datasets. The
widely used gzip and bzip2 compression software
was used to evaluate our lossless method. We re-
mark that these encoders perform compression of
the entire data and therefore cannot provide ran-
dom access capabilities of the other tested meth-

ods.

Table 2 shows the results of lossless compression
for our datasets. The figures represent only the
size of the information stored in the visibility ma-
trix itself and do not include view cell geometry
and other possibly required metainformation. Our
proposed technique (method 3) is uniformly better
than the other evaluated methods. In our opinion
the inner city dataset (3rd column) is the most
representative one, since it resembles our final 3D
model of the town of Graz at best. Further it can
be observed that the sparse matrix coding pro-
posed in [Panne99] (method 4) is inferior to simple
run-length coding used in method 3.

In general datasets with smaller average visibil-
ity yield to better compression, which is clearly
observable from the numbers for methods 0 to
2. If we compare the figures for method 0 with
those of method 3, run-length coding combined
with entropy coding increases the compression ra-
tio by a factor of 2 to 4. From the length his-
togramm we calculated the entropy and noticed,
that arithmetic coding would reduce the numbers
for method 3 by 13-15%.

The results for lossy compression are presented in
Table 3. Interestingly, the achieved compression
ratio (wrt. to the original table size) is approx-
imately the lossless compression ratio times half
the reduction in the number of view cells. This
implies that during lossy preprocessing some re-
dundancy is lost and the two compression stages
are not completely independent.

We finish this section by noting that about 20
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Figure 2: The logical layout of the external node structure. The physical layout may be different due to

quantization and compression of several fields.
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Scene properties | artificial 1 | artificial 2 | inner city | complete
# view cells 5766 23814 7259 2890
# occludees 1365 5461 36604 72159
average visibility 18.4% 8% 16.6% 35.1%

Table 1: Scene characteristics for the datasets.

bytes per nodes are required for the real datasets
to store (lossy) visibility information, which is
only a fraction of the size of geometric data
for each node, which is about 120 bytes uncom-
pressed.

8 CONCLUSION AND FU-
TURE WORK

We presented a novel lossless and optionally lossy
compression method to encode visibility data for
hierarchically organized scenes. Our method is
suitable especially in combination with out-of-
core rendering of view-dependent multiresolution
meshes, since the compressed visibility informa-

tion can be stored within the multiresolution data
structure and only required parts of the visibility
table need to be loaded at runtime.

Future version of our compression software will
incorporate the view cell geometry to enable faster
lossy preprocessing and reordering as outlined in
Section 4.2.
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Figure 3: The inner city dataset.

| Artificial 1 | Artificial 2 | Inner city | Complete |
Table size 983824 16264962 33217184 26067800
Gzipped table size | 188018 (5.2x) | 1545482 (10.5x) | 4186757 (7.9x) | 4834404 (5.4x)
Bzipped table size | 176768 (5.6x) | 1127423 (14.4x) | 2825137 (11.8x) | 3550038 (7.3x)
Method 0 300845 2314438 6650227 10387055
Method 1 305901 2497702 4587842 6126083
Method 2 301083 2409445 4476382 5813139
Method 3 140484 1061190 2111627 2624425
Compression ratio 7.0x 15.3x 15.7x 9.9x
Avg. run length 9.57 9.86 12.7 12.51
Method 4 226009 1771864 2729580 3181445
Compression ratio 4.4x 9.2x 12.2x 8.2x
Avg. run length 7.7 7.18 9.07 11.46

Table 2: Compression results for lossless compression.
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