
Feature-based Volume Rendering of Simulation Data
Matej Mlejnek

�

VRVis Research Center
Vienna / Austria

Abstract

In this paper we present a framework for interactive vol-
ume rendering of high-dimensional flow simulation data.
Our approach combines information visualization, flow vi-
sualization, as well as volume visualization techniques for
volumetric flow visualization. Interactive feature speci-
fication by use of multiple linked views and composite
non-binary brushes enables selection and multiple defi-
nition of volumetric features. Further, two-level volume
rendering is employed in order to depict the desired flow
structures in a focus-plus-context style showing the fea-
tures in detail, while the remaining data is rendered either
semi-transparently or contour-like, allowing the user a full
overview of the data set.

Keywords: visualization, flow visualization, volume ren-
dering, F+C visualization

1 Introduction

Recently, volumetric flow visualization of large data sets
got one of the most attractive and challenging fields in sci-
entific visualization [18]. However, data acquired from
flow simulation comprises not only vector data, but also
many scalar data values (e.g., pressure, vorticity, etc.) per
sample point. Unfortunately, common flow visualization
techniques are based mainly on vector data, taking into
account only some of the scalar data attributes.

On the other hand, scalar data in 3D can be depicted
by volume rendering methods (e.g., iso-surfacing, alpha-
compositing). Volume rendering assigns color value to
each pixel of the output image. The colors and opacities
are interpolated and merged with each other in back-to-
front or front-to-back order to yield the resulting color of
the pixel. A crucial part of volume rendering is the trans-
fer function, which assigns opacity and color value to each
voxel in the data.

However, transfer function design has become a re-
search topic on its own [17], the transfer function mapping
is limited mostly to one scalar voxel value (or also its first
and second derivatives) at each sample point [12]. In ad-
dition, this is done mostly (semi-)automatic, without user
interaction. In a flow data set a non-interactive approach
would fail due to the absence of sharp boundaries. Thus,
�
mlejnek@cg.tuwien.ac.at

we employ interactive transfer function design based on
specific attributes as well as on the spatial position of fea-
tures (section 3.2).

This paper describes a hybrid approach to volumet-
ric flow visualization, applying volume rendering on flow
data segmented in an interactive step. To reduce occlu-
sion problems, we propose an implicit feature-based ap-
proach. Interactive information visualization techniques
(e.g., brushing in scatterplot), in detail described in sec-
tion 3.1, are employed to select features (subsets of the
data with similar attributes) within a 3D scene. A feature
selections can be sorted and saved for further sessions us-
ing a feature description language, and rendered in RTVR
in a two-level rendering style (section 3.3). Finally, sec-
tion 4 presents various rendering modes and configura-
tions.

2 Related Work

The following chapter gives an overview of the most ap-
pealing approaches to 3D flow rendering. Crawfis et al. [1]
and Ebert et al. [5] introduced volume rendering of flow
data obtained from computational simulation of climate
and fluid dynamics, respectively, and extended volume
rendering algorithms to enable vector and scalar field data
representation. Later, Frühauf [6] extended the scalar field
ray casting concept to render vector fields with streamline
shading at sampling points.

Recently, rendering of flow volumes has been further
developed for the representation of time-varying data and
used in a wide area of computer graphics: Glau [9] used
a hardware-assisted system for analysis of computational
fluid dynamics, performing a costly resampling step to
cartesian grid, necessary for rendering of unstructured
grids obtained from simulations. Ebert et al. [4] pre-
sented a new concept for non-photorealistic volume illus-
tration of flow data by applying silhouette enhancement
on a 3D flow dataset. Swan et al. [19] described a simula-
tion system for computational steering extended to CAVE
environment in order to improve the interaction with the
rendered model. Ono et al. [15] presented a CAD-based
thermal flow visualization system applied in automotive
industry. The volume rendering was used to depict the
time-dependent temperature values from simulations in an
automotive cabin.



Figure 1: Feature-based volumetric visualization pipeline.

3 Framework

When dealing with volumetric data, due to occlusion and
often also due to missing rendering capabilities, it is pos-
sible to depict only a small portion of the data simulta-
neously. Especially if large and high-dimensional data
sets are investigated, as ones resulting from computational
simulation, the question of what data to display, gets cru-
cial. Feature-based visualization assumes a subset of the
original data set to be of special interest (in focus), while
the remaining part of the data set is not depicted to avoid
visual clutter. A degree-of-interest (DOI) function can be
used in order to separate data in focus from context in-
formation. According to the user’s interest, every sample
point is assigned a 1D DOI value, depending on whether
the user is interested in that part of the volume or not (1
represents objects of interest, while 0 represents sample
points in context). In this work, we utilize a non-discrete
DOI function [3] in order to reflect the smooth character-
istics of the data acquired from flow simulation. One can
define a smooth boundary along a selected feature or an at-
tribute, representing the continuous transition from objects
in focus to the context. In other words, a feature with a
smooth boundary can be represented by smooth DOI func-
tion, i.e., a function that continuously maps the defined
”user’s interest” to the [0,1] range.

In volume visualization, the role of object discrimina-
tion is mostly addressed via opacity transfer functions,
while the color transfer function enhances the visual per-
ception of displayed objects by shading or by different col-
oring of objects that belong to different structures (e.g., or-
gans). Unfortunately, the smooth distribution of flow data
values along spatial dimensions makes the (semi-) auto-
matic threshold-based segmentation without user interac-
tion quite difficult. Therefore, to define the color and opac-
ity of interesting structures in a large multi-dimensional
volume we employ an interactive brushing.

Figure 2: Brushing in the first scatterplot affects the selec-
tion in the second linked view.

In the scope of this work, we divided the visualiza-
tion mapping from raw data to resulting image into three
phases (figure 1). Firstly, the raw data acquired from sim-
ulation is segmented according to user’s selections in n-
dimensional data attribute space, resulting in a smooth
DOI function for each selected feature. Then, an appropri-
ate volumetric representation of the selected features has
to be chosen. We propose three models for volumetric fea-
ture representation: isosurface-triplets, feature volume and
feature streamlines. Each of them has its pros and cons de-
pending of the feature’s characteristics. Finally, the entire
feature set is rendered in two-level rendering style.

3.1 Interactive feature specification

Brushing is a very effective tool, especially when com-
bined with linking. The way how the user defines the
features is very intuitive and straightforward even if large
high-dimensional data are under investigation. The pri-
mary goal of this procedure is to guide the user while
brushing in the n-dimensional domain of the simulation
data to the desired feature specifications. An arbitrary
number of views, depicting one or more data set attributes
(e.g., histograms, scatterplots, etc.), are linked, brush-
ing in one window affects visual appearance in all other



Figure 3: An example of FDL. The root node contains an
arbitrary number of feature sets, which can be depicted si-
multaneously. A feature set contains one or more features
logically combined of simple selections on data attribute
ranges.

views. Our framework deals with composite brushes in
n-dimensional domain, allowing identification of complex
features of interest. Figure 2 demonstrates the concept of
linking and brushing: User brushes a smooth selection on
a scatterplot which depicts the relationship between abso-
lute presure and velocity data attributes. The selection im-
mediately affects all linked views (e.g., viscosity vs. turbu-
lence kinetic energy) showing what range from the other
data attributes is selected. A specific feature can be de-
fined by repeated selection in one or two-dimensional do-
mains of histograms and scatterplots respectively until the
desired structure is found. These approximate selections
can be refined using sliders or typing numerical values in
the allowed range of data attribute.

The intermediate result from the interactive feature se-
lection is represented in a compact structure called feature
definition language (FDL) [2]. The FDL is closely related
to a data set acquired from computational flow simulation.
The root layer consists of a filename and an arbitrary num-
ber of feature sets (figure 3). A feature set is a group of
selected features that are to be shown simultaneously. The
user can switch between feature sets, add new ones, delete,
or move features from one set to another during the ses-
sion. A feature layer is composed in a similar way, but
consists of one or more feature characteristics, i.e., one
or two-dimensional brushings in a histogram or a scatter-
plot respectively. A feature characteristic, the lowest FDL
layer, storing only brushed (smooth) range and the corre-
sponding data attribute, can be logically combined with
other feature characteristics allowing n-dimensional fea-
ture definitions. If the spatial dimension is taken into ac-
count as an additional attribute, feature definition based on
spatial position of the feature can be refined.

3.2 Visualization mapping

A smooth DOI function, resulting from multiple brushing
in n dimensions, assigns one floating point value between

Figure 4: Volume data flow within RTVR (similar to figure
2 in [14].

zero and one to every sample point in the investigated ob-
ject and, thus, identifies the user’s degree of interest in
each point. This user-defined function has proved to be
very useful as an additional attribute in two-level render-
ing (see section 3).

As already mentioned, our framework consists of an ar-
bitrary number of linked views enabling brushing on data
attributes and can be grouped into features. Each feature
is assigned to exactly one feature set and can be rendered
together with other features of the same feature set in the
render window. A DOI function, defining the features that
belong to a certain features set, can be updated after each
feature refinement in the information visualization inter-
face. The DOI function of newly defined and modified
features is evaluated in real-time while brushing and used
by the volume rendering process after each update. Fea-
tures which were deleted during the session are removed
from the scene and omitted from further investigation pro-
cess.

3.3 Two-level volume rendering with
RTVR

Once, the desired features are specified, feature-based vol-
ume rendering can be performed. In order to offer the user
a variety of object appearance modes, we use two-level
volume rendering [10] that combines different rendering
techniques for different objects within a 3D scene. Com-
positing modes can be selected on a per-object basis, giv-
ing the user a certain degree of freedom in setting up ren-
dering properties and object attributes. Moreover, clipping
in an arbitrary plane can be performed for a single object.

For rendering of selected features as well as con-
text information we bring into play RTVR [14], a java-
based library for two-level volume rendering of rectilin-
ear volumes at interactive frame rates. In comparison to
hardware-based approaches, due to its pure software na-
ture, it provides flexibility and easy extensibility. A fast
and memory efficient shear-warp approach implement-
ing a two-level volume rendering metaphor is well-suited
also for interactive rendering of large high-dimensional
data. When dealing with large time-varying data sets, data,



Figure 5: Isosurface-triplet of velocity of two joining flows. Two inputs (top and left) with low velocity are joining into
one fast output.

which belong to other time steps, are swapped to the disk.
The rendering primitive of RTVR is a voxel. Each voxel

is either assigned to a volume object and stored within a
special data structure, or omitted from further rendering
steps already at segmentation and data extraction phase
(figure 4). Segmentation can be done either interactively
(see section 3.1), or in a (semi-)automatic way (threshold-
ing, transfer function design, etc.) well-known from med-
ical visualization. Segmentation information can be saved
for the use in the next sessions. Since only a small frac-
tion of the original volume belongs to distinct objects of
interest, which are to be rendered, a high rendering perfor-
mance is achieved by significant data reduction. Further-
more, depending on the visualization method of the object,
voxels, for example, with low gradient magnitudes or with
values bellow the threshold value, are removed.

Due to a highly optimized internal data structure, an
RTVR object consists of so called RenderLists containing
only object’s voxels within one slice. A RenderList is an
array of 32-bit structures including 8 bits for each x and y
coordinate, therefore, data attributes are restricted only to
16 bits. These are typically split into a 12-bit and a 4-bit
field.

Transfer function design is based on three look-up ta-
bles (1x4bit and 2x12bit) which are available for each ob-
ject. Of course, this offers many different pros and cons.
For instance, shading operations are implemented in a 12-
bit LUT taking a voxel’s gradient vector as input. The
output is used for the RGB color lookup in another 12-
bit lookup table. Splitting into two sequentially performed
processes speeds up the refresh of LUTs, when only one
table has to be updated (e.g., after change of viewer po-
sition, only shading table has to be changed). Due to a

relative small size of a LUT, this can be done interactively
in every frame. For example, if the user chooses another
shading model, only the shading LUT has to be replaced.
Unfortunately, if the shaded object is to be shown, 12 bits
of the voxel’s attribute are reserved for gradient informa-
tion leaving only 4 bits for the remaining attributes (e.g.,
object opacity information).

4 Feature-based 3D Flow Visual-
ization

Each feature, defined by a DOI function, corresponds to
exactly one volumetric object. The object’s appearance
can be set up individually for each object, based on the
DOI function values of the features sample point as well
as derived from any of the attributes of the flow data set
(e.g., velocity, vorticity, pressure, etc.).

As already discussed, in addition to existing volume
rendering modes in RTVR, we propose several new ob-
ject appearance modes, refined by a DOI function attribute
and derived from user’s feature specifications in linked
views. In the scope of this paper we mainly distinguish be-
tween features (objects in context) and the remaining data
(context information). In the following sub-sections we
propose three main classes of objects, which can be cho-
sen to depict a feature, while object contours or a semi-
transparent surface proved to be well-suited for context
information. The results are demonstrated on volumetric
data sets coming from simulations in automotive industry.



Figure 6: Multiple iso-surfacing of a DOI function, depicting the region of full interest red. Green and blue iso-surface
areas are of 75% and 50% interest respectively.

4.1 Isosurface-triplet

Iso-surfacing is a fast method often applied with vol-
ume visualization due to its simple definition. An iso-
surface is fully described by an iso- and an opacity value.
To depict the smooth nature of flow data, we propose
isosurface-triplet, a volumetric object containing one main
iso-surface and an arbitrary number of additional surfaces,
which illustrate the desired data attribute inside of a feature
or closely surrounding the interesting region. The num-
ber of surfaces should be chosen carefully, since a high
number can cause visual clutter in the displayed view. An
isosurface-triplet’s main surface, similar to an iso-surface,
is defined by an iso- and opacity value. Additional surfaces
are determined by the relative distance from the main sur-
face as well as by relative opacity regarding the opacity of
the main surface. The color can be defined for each surface
separately.

Gerstner [7] presented the use of multiple iso-surfaces
for medical data using a multiresolution technique for sur-
face extraction. He assumed value-histogram minimas to
be appropriate iso-values for surface extraction. In a case
study [8], he demonstrates the approach on data sets from
meteorology. Recently, the research of fast extraction of
salient iso-values got very challenging [16, 20].

Our definition of a isosurface-triplet deals with a very
intuitive model depicting the main (middle) surface in
green, the inner and outer surface(s) red and blue respec-
tively. The iso-surfaces’ opacities depend strongly on the
shape and spatial position of the features as well as on the
specific goal of the visualization process. Initially they are
displayed semi-transparently. Figure 5 shows volumetric
data sets coming from simulation in automotive industry.
An isosurface-triplet is used to depict the velocity in a re-

Figure 7: Feature volume showing the region with high
viscosity. The shading of the object improves the spatial
perception, while the opacity depicts the DOI function.

gion of two joining flows. After investigation of many var-
ious feature definitions and shapes, three and five differ-
ent semi-transparent iso-surfaces proved to be enough for
a clear representation of the feature structure. Rendering
more than five semi-transparent surfaces simultaneously
leads to incorrect color interpretation, while showing more
than seven surfaces can hide the feature behind the redun-
dant context objects.

The isosurface-triplet is also very useful for depicting
of DOI functions even if a feature is defined as a combina-
tion of brushes on many different data attributes. Figure 6



Figure 8: Feature with high static pressure. The color
identifies the feature in a unique way, while the color in-
tensity depicts the velocity in this area.

depicts a DOI function of a complex feature in spatial co-
ordinates. Red surface localizes an area of focal interest
(DOI function = 1), while the areas with 75% and 50%
interest are depicted green and blue, respectively.

4.2 Feature Volumes

A second group of object representations offers a volumet-
ric representation of the structure(s) of interest. Voxels in
areas with non-zero DOI function belonging to one feature
are depicted as a volumetric object. In previous work [3],
using a DOI function for opacity modulation proved to be
appropriate for this kind of visualization. The opacity of
each voxel is computed by a linear ramp from its smooth
DOI-value. Object’s color can be determined in two ways.
Firstly, a unique color is assigned to each object to improve
its visual discrimination, while color intensity is used for
shading (figure 7). Secondly, color intensity can depict
another arbitrary data attribute from the data set. Figure 8
depicts a feature with high static pressure. The unambigu-
ousness of the object is achieved by its unique color, while
the color intensity represents an additional data attribute.
Figure 9 shows a feature volume with both color intensity
and opacity depicting the velocity. This color mapping
proved to be very useful, particularly if drastically modi-
fying the feature specifications. Investigation of numerous
non-colored objects can lead to ambiguous representation
of unequal features.

Further, an arbitrary number of feature objects can be
composited into one scene in a two-level rendering man-
ner. The object’s appearance can be defined on a per-
object basis, i.e., each feature is set up individually, choos-
ing the most suitable object attributes related to the fea-
ture, which the object represents. Figure 10 depicts two
different feature volumes. The region with low veloc-

Figure 9: Feature volume depicts a feature with high ve-
locity. The color identifies the object, while both color
intensity and opacity map the velocity data attribute.

ity (green) is displayed as a shaded object with semi-
transparent boundaries, resulted from smooth boundary
definition in feature specification step. The region with
high turbulence kinetic energy (TKE) (red) is also depicted
with semi-transparent boundaries. In this case, the semi-
transparency is caused by the TKE data attribute, which is
mapped as opacity.

Feature objects, derived from DOI function, can be
combined with volumetric object not defined by the user
in the brushing step, i.e., objects which are not created di-
rectly from DOI function.

For example, a surface, designed by thresholding with
a low iso-value on one data set attribute, can depict the
context information, even if only its contours are displayed
(figure 10).

4.3 Feature streamlines

The last group of objects useful for feature-based volume
rendering with a user-defined DOI function was inspired
by Jobard et al. [11]. They introduced evenly-spaced
streamline placement, controlling the seeding as well as
separating distance between adjacent streamlines. We ex-
tended their work to 3D applying a smooth DOI func-
tion in order to influence the seeding and breaking of the
streamline computation (figure 11). The use of smooth
DOI function offers several streamline placement modes
that enable the user an intuitive seeding area definition by
brushing in the information visualization views.

Firstly, the seeding of streamline starting points is al-
lowed only in regions with DOI function equal to one (re-
gions of focal interest). This restriction is closely cou-
pled to the style how the region of interest is selected.
In this case, it is possible to define desired seed locations
rather precisely even by typing numerical values (see: sec-
tion 3.1). The streamline computation is repeated while
the streamline endpoint is situated within a non-zero DOI



Figure 10: The visualization scene consisting of two volumetric features: The green region depicts the area with low
velocity with the semi-transparent area along the object caused by smooth brushing. The red region corresponds to an
area with high turbulence kinetic energy(TKE); the opacity corresponds to the TKE data value, showing the lower values
more transparent. The context is depicted by a surface.

region, or until it leaves the scene. In the second case DOI
values are mapped to color or opacity. Of course, both
above mentioned approaches produce similar results, since
sample points with zero DOI are displayed either trans-
parent (due to zero opacity) or black (due to zero color).
Furthermore, seeding points can be positioned either ran-
domly to speed up the computation, or the seeding condi-
tion can be evaluated in every point. Latter enables high-
est possible seeding density and ensures picking of equal
seeding point positions after each update without seeding
region modification.

Secondly, the seed position is chosen by randomly sam-
pling a probability seeding function used by Löffelman
et al. [13]. Comparison of a random floating number
�������	�

with the smooth DOI function (with the same
range) in a random spatial location determines whether the
location can be used for seeding. The break of streamline
computation is handled similar to previous case.

Applying previous schemes in our framework, non-
random seeding proved to be more useful allowing the user
more explicit investigation of visual changes caused by fo-
cus variation due to absence of influence of random enti-
ties.

A feature is identified by the feature streamline’s color
in a unique way. The color intensity can be mapped either

from the DOI value (figure 12) or the streamline can be
shaded using the shading model proposed by Zöckler [21]
(figure 11).

Figure 11: DOI forward streamline computation. Seeding
points are positioned in the region of focal interest (red).
The DOI function is mapped to object’s color intensity; the
region with non-zero DOI function is inside of the light-
green surface.



Figure 12: Two joining feature streamlines. Color intensity is straight proportional to the DOI function. Therefore the
streamline in areas of focal interest is depicted brighter than in the area with DOI value below one.

5 Conclusions and Future Work

We presented an interactive framework for focus-and-
context volumetric visualization for data acquired from
computational simulations. To reduce occlusion problems,
we have chosen a feature-based approach. Features de-
fined in as interactive step can be depicted in three differ-
ent modes: Isosurface-triplet, Feature volume, or Feature
streamline. What representation is to be used for a certain
feature, strongly depends on the feature’s characteristics
and spatial position.

The next step to further develop our visualization frame-
work is to extend it to time-varying data. This includes
new feature specification techniques also involving new
volume rendering modes. Moreover, the need for high
quality rendering could require implementation in hard-
ware as well as new simulation techniques yielding more
precise data measured on huge number of sample points.
But the latter is far behind the scope of this paper.

6 Acknowledgements

This work has been carried out as part of the basic research
on visualization at the VRVis Research Center in Vienna,
Austria (http://www.VRVis.at/vis/), which is partly funded
by an Austrian research program called Kplus. All data

presented in this paper are courtesy of AVL List GmbH,
Graz, Austia. A special gratitude goes to Helwig Hauser
for helping to prepare this paper, and Martin Gasser, Hel-
mut Doleisch and Markus Hadwiger for implementation of
feature specification layer as well as the underlying mesh-
library system. Also author would like to thank Lukas
Mroz for the implementation of Real-Time Volume Ren-
dering library.

References

[1] Roger Crawfis, Nelson Max, Barry Beccker, and
Brian Cabral. Volume rendering of 3D scalar and
vector fields at LLNL. In Proceedings, Supercomput-
ing ’93: Portland, Oregon, November 15–19, 1993,
pages 570–576, 1109 Spring Street, Suite 300, Sil-
ver Spring, MD 20910, USA, 1993. IEEE Computer
Society Press.

[2] Helmut Doleisch, Martin Gasser, and Helwig
Hauser. Interactive feature specification for fo-
cus+context visualization of complex simulation
data. In Proceedings of the 5th Joint IEEE TCVG
EUROGRAPHICS Symposium on Visualizatation
(VisSym 2003), to appear, Grenoble, France, May
26–28 2003.



[3] Helmut Doleisch and Helwig Hauser. Smooth brush-
ing for focus+context visualization of simulation
data in 3D. In Journal of WSCG, volume 10, 2002.

[4] David Ebert and Penny Rheingans. Volume illustra-
tion: non-photorealistic rendering of volume models.
In IEEE Visualization ’00 (VIS ’00), pages 195–202,
Washington - Brussels - Tokyo, October 2000. IEEE.

[5] David S. Ebert, Roni Yagel, Jim Scott, and Yair
Kurzion. Volume rendering methods for computa-
tional fluid dynamics visualization. In Proceedings
of the Conference on Visualization, pages 232–239,
Los Alamitos, CA, USA, October 1994. IEEE Com-
puter Society Press.

[6] Thomas Frühauf. Raycasting vector fields. In Pro-
ceedings of the Conference on Visualization, pages
115–120, Los Alamitos, October 27–November 1
1996. IEEE.

[7] Thomas Gerstner. Multiresolution Extraction and
Rendering of Transparent Isosurfaces. Computers &
Graphics, 26(2):219–228, 2002. (shortened version
in Data Visualization ’01, D.S. Ebert, J.M. Favre and
R. Peikert (eds.), pp. 35-44, Spinger, 2001, also as
SFB 256 report 40, Univ. Bonn, 2000).

[8] Thomas Gerstner, Dirk Meetschen, Susanne Crewell,
Michael Griebel, and Clemens Simmer. A case
study on multiresolution visualization of local rain-
fall from weather radar measurements. In Proceed-
ings of the conference on Visualization ’02, pages
533–536. IEEE Press, 2002.

[9] Thomas Glau. Exploring instationary fluid flows
by interactive volume movies. In Data Visualiza-
tion ’99, Eurographics, pages 277–283. Springer-
Verlag Wien, May 1999.

[10] Helwig Hauser, Lukas Mroz, Gian-Italo Bischi, and
M. Eduard Gröller. Two-level volume rendering -
fusing MIP and DVR. In IEEE Visualization ’00 (VIS
’00), pages 211–218, Washington - Brussels - Tokyo,
October 2000. IEEE.

[11] Bruno Jobard and Wilfrid Lefer. Creating evenly-
spaced streamlines of arbitrary density. In Visu-
alization in Scientific Computing ’97. Proceedings
of the Eurographics Workshop in Boulogne-sur-Mer,
France, pages 43–56, Wien, New York, 1997. Euro-
graphics, Springer Verlag.

[12] Joe Kniss, Gordon Kindlmann, and Charles
Hansen. Interactive volume rendering using
multi-dimensional transfer functions and direct
manipulation widgets. In IEEE Visualization ’01
(VIS ’01), pages 255–262, Washington - Brussels -
Tokyo, October 2001. IEEE.

[13] Helwig Löffelmann and M. Eduard Gröller. Enhanc-
ing the visualization of characteristic structures in
dynamical systems. In Visualization in Sientific Com-
puting ’98, Eurographics, pages 59–68. Springer-
Verlag Wien New York, 1998.

[14] Lukas Mroz and Helwig Hauser. RTVR - a flexi-
ble java library for interactive volume rendering. In
IEEE Visualization ’01 (VIS ’01), pages 279–286,
Washington - Brussels - Tokyo, October 2001. IEEE.

[15] Kenji Ono, Hideki Matsumoto, and Ryutaro Himeno.
Visualization of thermal flows in an automotive cabin
with volume rendering method. In Proceedings of
the Joint Eurographics - IEEE TCVG Symposium on
Visualizatation (VisSym-01), pages 301–308, Wien,
Austria, May 28–30 2001. Springer-Verlag.

[16] Vladimir Pekar, Rafael Wiemker, and Daniel
Hempel. Fast detection of meaningful isosurfaces for
volume data visualization. In IEEE Visualization ’01
(VIS ’01), pages 223–230, Washington - Brussels -
Tokyo, October 2001. IEEE.

[17] Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj,
Gordon Kindlmann, Will Schroeder, Lisa Sobiera-
jski Avila, Ken Martin, Raghu Machiraju, and Jinho
Lee. Visualization viewpoints: The transfer func-
tion bake-off. IEEE Computer Graphics and Appli-
cations, 21(3):16–23, May/June 2001.

[18] Frits Post, Benjamin Vrolijk, Helwig Hauser,
Robert S. Laramee, and Helmut Doleisch. Fea-
ture extraction and visualization of flow fields. In
Eurographics 2002 State-of-the-Art Reports, pages
69–100. The Eurographics Association, Saarbrücken
Germany, 2–6 September 2002.

[19] J. Edward Swan, II., Marco Lanzagorta, Doug
Maxwell, Eddy Kuo, Jeff Uhlmann, Wendell Ander-
son, Haw-Jye Shyu, and William Smith. A compu-
tational steering system for studying microwave in-
teractions with missile bodies. In IEEE Visualization
’00 (VIS ’00), pages 441–444, Washington - Brussels
- Tokyo, October 2000. IEEE.

[20] Shivaraj Tenginakai, Jinho Lee, and Raghu Machi-
raju. Salient iso-surface detection with model-
independent statistical signatures. In IEEE Visual-
ization ’01 (VIS ’01), pages 231–238, Washington -
Brussels - Tokyo, October 2001. IEEE.

[21] Malte Zöckler, Detlev Stalling, and Hans-Christian
Hege. Interactive visualization of 3D-vector fields
using illuminated streamlines. In Proceedings of
IEEE Visualization ’96, San Francisco, pages 107–
113, October 1996.


