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Abstract:

We present a novel hardware accelerated method for rendering images of a 3D scene. The

method uses the recently proposed multiple eigenspace method to obtain an efficient represen-

tation of rotated objects that can be easily implemented on modern graphics cards using their

fragment shader capabilities. Due to the restrictions of current graphics hardware (which are

discussed in detail), the multiple eigenspaces method (originally proposed for the purpose of

object recognition) has to be slightly modified. We use the Stanford Bunny model to evaluate

our method. Our experiments demonstrate the excellent performance of hardware-based image

reconstruction.

1 Introduction

A variety of so-called image-based rendering (IBR [9]) techniques has been developed to solve

the problem of photorealistic rendering. The basic idea is to replace complex geometry and

illumination by an image of the surface (or, more recently, multiple images). These images

can be precomputed using sophisticated rendering techniques with almost no restriction in

computational complexity. Alternatively, images of an object can be taken directly in its

natural environment (or under laboratory conditions for better control of illumination), thus

bypassing the 3D reconstruction stage entirely.

If the user should be allowed to view the scene from any position and direction, the complete

five-dimensional plenoptic function [9] needs to be sampled (and properly reconstructed for

rendering). In the absence of obstructions, this function can be reduced to a four-dimensional

function, called Lumigraph [6] or light field [8]. A much simpler approach is the billboard

concept [3]. It uses a single two-dimensional image that is rotated (with one or two degrees of

freedom) to be always oriented towards the viewpoint. Billboards are only suitable for objects

that are almost rotationally symmetric (such as trees and similar objects). This technique is

implemented in the wide-spread VRML language [11].



As an intermediate solution between the billboard concept and sophisticated approximations

of the plenoptic function, we present a technique that captures the object’s appearance with

one degree of freedom (i.e., a rotation around the vertical axis). Thus a three-dimensional

function f(x, y, ϕ) is created, where ϕ is the angle of rotation. To reduce the amount of data,

compression is done in our method by multiple eigenspaces decomposition [7] of the different

views of the object. The final image is composited by graphics hardware, such as recent

boards by NVidia and ATI. The fragment shader capabilities of these boards are accessed by

the language “Cg” [1]. This allows almost platform-independent code. Moreover, we expect

our method to fit nicely and efficiently into a polygonal rendering environment.

This paper is organized as follows. Related methods are shortly reviewed in Section 2. Details

on our method are given in Section 3, experimental results are presented in Section 4. The

paper is concluded in Section 5.

2 Related work

2.1 Multiple eigenspaces

A correlated set of images can be compressed by using eigenspaces [10]. The obtained compres-

sion will be quite good if the whole set of images is highly correlated. However, if the object to

be compressed has a different appearance from various view-points, the obtained compression

is not optimal. To alleviate that problem, a novel self-organizing framework to construct mul-

tiple, low-dimensional eigenspaces from a set of training images has recently been proposed [7].

Grouping of images is systematically and robustly performed via eigenspace-growing in terms

of low-dimensional eigenspaces. To further increase the robustness, the eigenspace-growing is

initiated independently with many seeds (small groups of images). All these grown eigenspaces

are treated as hypotheses that are subject to a selection procedure eigenspace-selection, based

on the minimum description length principle (MDL), which selects the final resulting set of

eigenspaces as an efficient representation of the training set, taking into account the number

of images encompassed by the eigenspaces, their dimensions, and their corresponding residual

errors.

In this framework each image x can then be represented as a linear combination of eigenimages

forming an eigenspace: xi =
∑m

j=1 I
(i)
j

∑dj

k=1 c
(i)
jkejk, m is the number of all eigenspaces, dj is

the dimension of the j-th eigenspace, I
(i)
j is a variable which is 1 for the j-th eigenspace which

encodes the image xi and 0 otherwise, and cjk and ejk are the corresponding coefficients and

eigenimages, respectively. All the required parameters are found completely automatically.



2.2 Image-based rendering

Plenoptic modeling [9] has been introduced as a general framework for image-based rendering.

The authors state that the goal of any image-based rendering system is the generation of

a continuous representation of the plenoptic function, given a set of discrete samples. An

informed survey on IBR can be found in [4].

If we are only interested in a single object without obstructions, a four-dimensional represen-

tation of the light flow is sufficient, as it was independently presented by Gortler [6] and Levoy

[8] at the same conference. Both authors state a huge amount of data required to represent

even the reduced four-dimensional light distribution function. Although compression ratios

of better than 1:100 have been reported [6, 8], the resulting data sets (several megabytes in

size) are still prohibitive for remote visualization purposes over any network except high-speed

LANs.

In the dynamic textures approach [5], small details on a (polygonal) surface are captured by

principal component analysis. While the coarse geometry is rendered traditionally, surface

details are applied by image based rendering. A hardware implementation of the algorithm

using texture blending is proposed. The method requires up to 100 texture bases, in contrast

to the rather small eigenspace dimension in our method.

3 Our Method

3.1 Eigenspaces construction

Input images are assigned to eigenspaces by performing the calculations with scaled down

color images. Once the assignment is determined, the computation is done in full resolution.

In order to use multiple eigenspaces on graphics card we have to take into account the limited

number of texture buffers available. In addition we require that all eigenspaces have a similar

reconstruction error (i.e., in order to reduce annoying visualization artifacts when moving from

one eigenspace to another). These requirements can be easily incorporated in the eigenspace

growing process.

3.2 Hardware-based image reconstruction

Graphics adapters offering at least some limited programmability of their fragment creation

stage have become commonplace during the past years. However, the flexibility largely differs

between graphics cards from different vendors and even between different models of the same

vendor. The “Cg” language was designed by NVidia to overcome these problems [1]. It
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Figure 1: Eigenimages (256×256 pixels, green channel) scaled to the range of texture images

and the corresponding histograms

is a high-level language (similar to the popular “C” programming language) to encapsulate

hardware details in a platform-specific compiler back-end. However, to achieve optimal results,

the programmer should be aware of limitations of the target platform.

The following discussion refers to NVidia’s GeForce4 since it fulfills the minimum requirements

for image reconstruction from multiple eigenspaces. Eigenimages and the mean image have

to be stored as texture images with an integer range from 0 to 255. Numeric operations

in the fragment shaders are performed in fixed point registers of eight bits plus one sign bit.

Mapping the input range from [0; 255] to [−1; +1] is supported in hardware without additional

computation time. Similar considerations apply to the coefficients, which are passed as the

RGBA components of a color register. The number of texture images that can be processed

simultaneously is limited to four on the GeForce4.

Now let us examine how the image reconstruction equation

y =
N∑

i=0

cixi (1)

for a single eigenspace will be processed in hardware. Note that for uniformity we consider the

mean image to be given by xo with a constant coefficient c0 = 1. The remaining coefficients

ci for the eigenimages xi are linearly interpolated between the values computed for the input

orientations.

Equation 1 cannot be calculated exactly for two reasons. First, the number of texture images

that can be processed in a single render pass is limited to four, therefore only the mean image

and three eigenimages can be used (we define M = min(N, 3) in our case). It is straightforward

to incorporate this limitation into the multiple eigenspaces framework by using a maximum

eigenspace dimension in the growing step of the algorithm as indicated in Section 3.1. Second,

due to the limited number of bits, calculations are performed with quantized values c̃i = ci +qi



#include "structs.h"

float4 main(VertexOut In,

uniform sampler2D img0,

uniform sampler2D img1,

uniform sampler2D img2,

uniform sampler2D img3): COLOR

{

return

4 * (In.coeffs[0] - 0.5) * (tex2D(img0, In.texCoord0.xy) - 0.5) +

4 * (In.coeffs[1] - 0.5) * (tex2D(img1, In.texCoord1.xy) - 0.5) +

4 * (In.coeffs[2] - 0.5) * (tex2D(img2, In.texCoord2.xy) - 0.5) +

2 * (In.coeffs[3] - 0.5) * tex2D(img3, In.texCoord3.xy);

}

Figure 2: Cg code for fragment shader (optimized for NVidia GeForce4 cards)

and x̃i = xi + ri instead of the exact values ci and xi. The quantized output image is then

computed as

ỹ =
M∑

i=0

c̃ix̃i + s =
M∑

i=0

(ci + qi) (xi + ri) + s = y +
M∑

i=0

(qixi + ciri)

︸ ︷︷ ︸

A

+
M∑

i=0

qri

︸ ︷︷ ︸

B

+s ≈ y. (2)

The quantization errors qi and ri are small compared to the values of ci and xi, respectively,

if the available range is used appropriately. This is the case in Figures 1(a) and 1(b), and

to some extent in Figures 1(c) and 1(d). Therefore the term B in Equation 2 can clearly

be neglected. The term s amounts to truncating the computation result due to the limited

color resolution of the display device. Since the human eye can only resolve approximately

100 different values of each color channel within the dynamic range of a monitor, s does not

introduce any visible error and can also be neglected. Finally, since the quantization errors

are not correlated with each other, they tend to cancel out each other, making the term A also

negligible. We therefore conclude that quantization due to hardware limitations has no serious

impact on image reconstruction. The resulting image is rendered in a plane that always faces

the viewer (much like a billboard [3]).

The Cg code evaluating Equation 2 and performing the necessary range transformations is

shown in Figure 2 (see [1] for full details on the Cg language). The method also works for

ATI’s Radeon 9700 boards. However, ATI’s more flexible hardware (up to 16 floating point

textures processed in a single pass) could be used to almost entirely eliminate quantization

effects (except for the final result). This is left as future work.
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Figure 3: Bunny model reconstructed for different orientations

4 Results

We have performed experiments with several objects. Depending on the complexity of the

object we get a different number of eigenspaces. For example Figure 3 shows several recon-

structions of the Stanford Bunny. From 72 views used for training the algorithm created 5

eigenspaces with dimension 3 each. A high-frequency texture has been applied to the model

to be able to better observe reconstruction errors.

Figure 4 illustrates eigenspace construction for the Bunny model. During the growing phase,

35 eigenspaces are taken into account (Figure 4(a)), while only 5 eigenspaces remain after the

selection phase (Figure 4(b)).

4.1 Appearance

Some of the reconstructed images appear clean and (almost) sharp (Figures 3(a), 3(b), and

3(f)), while others are quite heavily blurred (Figure 3(d)). The reason for the blurred images

is the limited number of texture units (i.e., truncating Equation 1 after a few terms).
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Figure 4: Growing and selection of eigenspaces: a black dot in the diagram indicates that this

image (x-axis) is included in the eigenspace (y-axis)

4.2 Performance

Since graphics hardware is highly optimized for speed, our image reconstruction method is

extremely fast. Computation of the reconstruction (Equation 2) takes 560 µs for the Bunny

model (Figure 3) at full resolution on a GeForce4 Ti4200. A scene consisting of 1000 instances

of the eigenspace Bunny could be rendered at interactive rates (i.e., 10 to 15 frames per

second).

5 Conclusions and future work

We presented an image reconstruction method that uses current graphics hardware to calculate

the linear combination of eigenimages. The method meets the high expectations regarding

rendering performance. While our test platform, the NVidia GeForce4 graphics card, fulfills

the basic requirements, there is some room for improvements. The most annoying artefact

is the clearly visible popping that occurs when switching between different eigenspaces. For

proper blending, the system must be capable of interpolating between the eigenimages of two

eigenspaces, which requires roughly twice the number of texture units. Therefore we expect

these problems to be reduced when using more powerful hardware (e.g., ATI Radeon 9700).

Another solution could be multipass rendering, which has not yet been implemented in this

context.

Similar to other image-based rendering systems, the resolution of the final image is limited

to the resolution of the input images in our method. For a close-up view of a highly detailed

model it is therefore required to switch to a polygonal representation. However, as indicated

in Section 4.2, our method is well suited for rendering a large number of objects at a small or

medium scale.



We would also like to note that an eigenspace dimension suitable for robust image recognition

might not be sufficient for generating high-quality images. This has to be taken into account

when preparing eigenspaces for the use with image-based rendering methods.

Eigenspaces are computed independently for each image channel (except the fixed assign-

ment of input images to eigenspaces). Providing a foreground/background mask in the alpha

channel would improve our method’s compatibility with polygonal models without increas-

ing computation time. Moreover, the method can be put into a real-time rendering frame-

work featuring multiresolution and progressive transmission. This involves compression of the

eigenimages (e.g., using the wavelet capabilities of JPEG2000 [2]) and a budget rendering

mechanism to optimally utilize available resources.
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