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Abstract

Analysis of four-dimensional cardiac MRI data sets
has become a popular tool in modern cardiology.
Semi-automatic segmentation of objects of interest,
like the myocardium or the left ventricle, helps to in-
crease effectiveness in the cardiologist’s work. This
paper presents a new algorithm for semi-automatic
segmentation of the myocardium in a 3D or 4D
MRI data set. The user manually approximates the
center-line (skeleton) of the myocardial cross-section
in one slice. The skeleton is used to initialize a simple
deformable model which is then iteratively aligned
with myocardial contours. It is primarily attracted
to sharp boundaries fragments of the myocardium
and fine-tuned by aligning with remaining image gra-
dients. The segmentation result is finally automati-
cally propagated to all other slices.
Keywords: myocardium, segmentation, inflation,
deformable model

1 Introduction and Related
Work

Four-dimensional Magnetic Resonance Imaging
(MRI) has become an important tool in modern car-
diology. A patient’s cardiac activity can be recorded
by generating MRI data volumes of the heart at a
number of time points evenly distributed over one
cardiac cycle. In order to be able to automatically
extract important properties of the patient’s heart
function, objects of interest, like the heart muscle
(the myocardium) and the left ventricle of the heart,
must be segmented in each data volume. Segmen-
tation of cardiac MR images is often problematic
due to poor image quality which has various rea-
sons: Patient movement, turbulent blood flow and
physical and chemical disturbances of the imaging
process lead to a number of artifacts which have to
be compensated by the segmentation technique.

Segmentation of MRI data is still an active field of
research, although a lot of different methods have al-

ready been proposed: Most techniques are based on
the concept of deformable models [6, 11]. A bound-
ary is initialized and iteratively aligned to object
contours by applying internal and external forces.
Internal forces keep the boundary in a smooth vol-
umetric shape and enforce shape-based constraints
often stemming from a-priori knowledge about ob-
ject contours. External forces fit the boundary to
image properties by, for instance, driving it towards
significant image gradients. Many different concepts
for initialization and refinement of deformable mod-
els in the field of medical image segmentation have
been published: One of the most popular is the
method known as ’snakes’ [3]. A snake is an energy-
minimizing spline which is driven by internal forces,
constrained (user-defined) forces and image forces to-
wards the correct object boundaries.

Most deformable models, including snakes, are
very sensitive with respect to initialization. Proper
initialization, preferrably as close to the correct
boundary as possible, is often crucial for the avoid-
ance of getting stuck in local minima of the un-
derlying energy functional. One popular concept
is to initialize the model somewhere inside the seg-
mented object and apply inflation forces to expand
the boundary until it fits the object boundaries.
Deformable models using this technique are often
called ’balloons’ [1]. Jones and Metaxas use pixel-
affinity [10] (a measure of probability that two neigh-
boring pixels belong to the same object) and bal-
loon forces to initialize a two-dimensional deformable
model [2]. McInerney and Terzopoulos use a three-
dimensional finite element surface model which is
also pushed towards the final object boundaries
by balloon forces and then refined by data-driven
forces [5]. These approaches cannot segment the my-
ocardium right-away, due to the concave shape of the
heart muscle. The left ventricle must be segmented
first, then the shape of the epicardium (the outer
boundary of the myocardium) can be initialized out-
side the ventricle and further refined [8]. However,
image noise, MRI artifacts and papillary muscles



(small muscles inside the LV) can lead to initializa-
tions far from the correct boundaries preventing the
desired quality of result.

Techniques which combine the deformable model
approach with anatomical atlases [4, 7] have been
proposed. Data sets acquired from a number of pa-
tients or volunteers form a training set. They are
abstracted to common features which are collected
to an atlas and aid the automatic segmentation of
new data sets. Research in this area, however, is still
young. Current systems are either restricted to 2D
images or have trouble segmenting data sets where
structures are significantly different to those encoun-
tered in the training set.

This paper introduces a new approach based on
a deformable model which is initialized around an
approximated center-line of the cross-section of the
myocardium in each slice of the MRI volume and
then iteratively refined. This algorithm reduces the
probability of the model locking in a local minimum
by detecting highly significant boundary voxels prior
to the process of model refinement. For model refine-
ment, an inflation force and image- and shape-based
forces are applied to drive the deformable boundary
towards these detected boundary fragments and at-
tach it to the real boundaries of the myocardium.

2 Myocardium Segmentation

This section gives a detailed description of the new
algorithm for segmenting the myocardium from car-
diac data sets obtained from MRI.

The result of a cardiac MRI scanning process is a
set of images of cross-sections (slices) of a patient’s
heart. The algorithm presented here works on a slice-
by-slice basis. The core structure of the technique
is outlined in figure 1. Segmentation of the my-
ocardium from a 3D data set starts with the user
manually approximating the center line (the skele-
ton) of the cross-section of the myocardium in an
arbitrary slice by placing a poly-line onto the slice
(step 1). Utilizing this user-defined skeleton, a pre-
segmentation step indentifies data gradients which
are likely to represent parts of the boundary (steps 2
and 3). Next, a simple deformable boundary is ini-
tialized tightly enclosing the skeleton (step 4) and it-
eratively refined (”inflated”, step 5) to finally match
the object contours. This progressive adaptation is
achieved by applying a set of forces to the deformable
model, which attract it towards the previously iden-
tified (step 5) gradients, and at the same time en-
force constraints which keep the boundary in the
correct shape. Once the final contours have been

found, the center line of the segmented myocardial
cross-section is calculated using skeletonization (step
6). This center line is then copied to the next slice
(step 7), slightly adapted to better fit the data (step
8) and then used to initialize a new two-dimensional
segmentation step.

The following paragraphs describe those steps in
detail:

2.1 Manual Skeleton Placement

In the first step of the segmentation algorithm, the
user selects a slice and places a poly-line on it, which
approximates the center line of the myocardial cross-
section on the slice (see the leftmost image in fig-
ure 2).

2.2 Detection of Boundary Fragments

One of the key parts of this algorithm is the identifi-
cation of significant gradients which represent parts
of the object boundary with high probability and can
be used to attract the deformable boundary. This
edge detection technique is based on voxel connectiv-
ity: For each voxel in the slice, a value is calculated
which denotes its connectivity to the skeleton. This
connectivity value is high, if there exists a path from
the voxel to any part of the skeleton, which traverses
similar data values and no significant gradients.

In MRI data sets, a set of artifacts can be ob-
served, which can cause the data level to vary quite
significantly within the myocardium. Care has to
be taken to compensate these possible data inhomo-
geneities. This is done by using all intensity values
that the skeleton passes through locally as reference
values for the calculation of connectivity:

The connectivity values of all voxels of the slice,
which are not part of the skeleton, are initialized to
0, those of skeleton voxels are 1. Each voxel is also
assigned a reference value. This reference value is
initially 0 for non skeleton voxels and equal to the
intensity value for skeleton voxels. A sorted list of
voxels is generated. Entries are sorted by descending
connectivity values. The list initially holds all skele-
ton voxels. In order to calculate the remaining con-
nectivity values, the following steps are iteratively
performed:

1. Retrieve the voxel with highest connectivity
from the list. If the connectivity is below 0,
stop execution of the algorithm. Let c be the
connectivity value and r the reference value of
the obtained voxel.
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Figure 1: algorithm overview

Figure 2: left: manually placed skeleton, center: voxel connectivity, right: preliminary boundaries

2. For each immediate neighbor voxel (4-
neighborhood), calculate the value t with:

t = c− C1 − C2(1− S)C3

S is a measure of similarity of the intensity value
v of the neighbor voxel with the reference value
r:

S = e
((v−r)/C4)2

−2

The constant values C1, C2, C3 and C4 control
the dynamics of connectivity propagation: C1

determines the degree of penalization of longer

paths. C2 determines the degree of penalization
of higher gradients. C3 controls the steepness of
the function assigning decrease of connectivity
to gradient size and C4 controls the similarity
relation between data values. For the example
illustrated in the figures of this paper, the values
C1 = 0.02, C2 = 28.5, C3 = 2 and C4 = 14 were
used.

3. If t is higher than the current connectivity value
of the neighbor voxel, the connectivity value is
changed to t and the reference value is changed
to r.



4. return to 1.

The center image of figure 2 shows the resulting
field of connectivity values (black means no connec-
tivity, white means high connectivity). A prelimi-
nary boundary is now extracted as an iso-contour in
the connectivity field using a threshold T (step 3,
see the rightmost image of figure 2). Since T is very
small (close to zero), this preliminary boundary con-
tains sharp edges of the myocardium as well as less
significant edges well outside the heart muscle. The
significant myocardium edges can now be identified
by reducing the preliminary boundaries to the parts
with largest connectivity gradient: Let the neighbor-
hood of voxel v be all voxels within a Manhattan-
Distance of 3 from v. The value shigh is the sum of
the connectivity values of all neighbor voxels which
have a higher connectivity than v and nhigh the num-
ber of those voxels. Values slow and nlow are analo-
gous. The connectivity gradient of v is:

chigh · (1− clow)

with

chigh =
shigh

nhigh
· 10
max(nhigh, 10)

and clow being calculated analogously. Values chigh

and clow are the average connectivity values of neigh-
bor voxels with higher, respectively lower, connectiv-
ity, if nhigh = nlow = 10 and lower otherwise. Higher
gradient values are therefore assigned to voxels whose
connectivity values are the medians in their neigh-
borhoods. This scheme effectively reduces the im-
pact of noise. The sizes of connectivity gradients of
voxels belonging to the preliminary boundary are de-
picted in the leftmost image of figure 3. Now, impor-
tant boundary fragments can be extracted from the
preliminary boundary by removing all voxels whose
connectivity gradients are below a threshold T2. A
suitable value for T2 can be found by analyzing the
function f which maps to each connectivity value c
the number of preliminary boundary voxels with a
connectivity c′ > c. Threshold T2 should be near
the lowest point of the first derivative of f . The cen-
ter image of figure 3 shows the resulting boundary
fragments.

2.3 Boundary Model Initialization

Two deformable models are initialized as polygons
whose vertices are adjacent to the skeleton, one
model outside and one model inside the skeleton.
The initialized boundary polygons should not inter-
sect the skeleton.

2.4 Boundary Model Refinement

The key part of the presented algorithm is to refine
the initialized boundaries and align them with the
real contours of the myocardium. The boundary, ini-
tially located tightly around the skeleton, is exposed
to forces which expand it until it touches the precal-
culated boundary fragments. The iterative enlarge-
ment of the enclosed region gives the impression of
the boundary being inflated until fixed barriers (the
boundary fragments) prevent further growing. Re-
finement consists of minimizing an energy functional
e, with:

e = eBound · eShape · eGrad

The three involved terms relate to the following as-
pects:

• Boundary fragments: The deformable bound-
aries should be attracted to the boundary frag-
ments identified in step 3. The term eBound

is proportional to the average squared distance
of boundary voxels to voxels belonging to pre-
computed boundary fragments. For calculation
of eBound a chamfer distance map denoting for
each voxel in the slice the distance to the nearest
voxel which is part of a precomputed boundary
fragment, is computed. Chamfer distance grow-
ing is always interrupted by the skeleton. This
ensures that the distance descends into all di-
rections from the skeleton and therefore the two
boundary models are attracted to opposite ob-
ject contours. An example distance map is de-
picted in figure 3. In this image, the skeleton is
indicated by discontinuities in the distance field.
Minimization of eBound is the primary force ap-
plied to the models. Since the probability of
boundary fragments located well inside the my-
ocardium is extremely low, the risk of getting
stuck in local minima is significantly reduced.

• Boundary model shapes: Both boundaries
should maintain simple shapes. The term eShape

is made up of two factors: The first factor en-
sures the maintenance of local curvature. Cross-
sections of the epicardium in MR scans are al-
ways close to circular or elliptical. This fact
can be utilized by penalizing shapes deriving too
much from elliptical. The other factor preserves
the topologies of the models by keeping each ver-
tex close to the centroid of its two neighbors.

• Image gradients: For fine tuning, especially
in regions, where no boundary fragments have
been found, the boundaries should also align



with image gradients. The term eGrad penal-
izes parts of the boundaries moving through re-
gions of low gradients. Instead of using real im-
age gradients, here, gradients in the connectivity
field are used. The advantage of this is that im-
age gradients within the myocardium, which are
possible due to MRI artifacts, do, with a high
probability, not coincide with gradients in the
connectivity field, due to the properties of the
connectivity calculation algorithm discussed in
section 2.2.

Progressive refinement of the deformable model is
accomplished by iteratively moving each boundary
vertex. The direction of the movement of a ver-
tex is determined by two forces: an inflation force
which repells the vertex from the skeleton and an
energy-minimizing force which moves the vertex such
that the energy functional of the complete bound-
ary model is minimized. Using these two forces, the
boundary is expanded from its initial state and snaps
to the predefined boundary fragments. Figure 4 il-
lustrates the inflation process: The boundary is de-
picted after one iteration of the refinement process
(each vertex has been moved once), after two itera-
tions and after twelve iterations.

2.5 Skeletonization

As already stated, only segmentation of one slice of
the data set is initialized by manual skeleton place-
ment. The segmentation result is then automati-
cally propagated to all other slices. Propagation
from one slice (the source slice) to another (the des-
tination slice) is performed by skeletonizing the de-
tected cross-section of the myocardium in the source
slice (step 6), copying the skeleton to the destina-
tion slice (step 7), slightly adapting it (step 8), and
then using it for initialization of the boundary as out-
lined in section 2.3 and for identification of boundary
fragments (see section 2.2). There are various ways
of skeletonizing a two-dimensional object. The one
used in this project was proposed by Telea and van
Wijk [9]. Here, each voxel which is part of the bound-
ary of the segmented object is assigned a unique inte-
ger value, with the values monothonically increasing
along the boundary. Then, using the Fast March-
ing Method (FMM), these values are propagated to-
wards the center line of the object, thereby creating
a field of values. The resulting skeleton consists of
those voxels showing a sufficiently high gradient in
this field.

After a skeleton has been found, it is copied to
the next slice and slightly adapted to the data there.

Then, using the adapted skeleton, a new segmenta-
tion step is initialized.

2.6 Skeleton Adaptation

Due to limited scanning speed, four-dimensional
MRI data sets are usually resolved well only in two
spacial dimensions. The distances between slices are
usually much larger than distances between neigh-
boring voxels of the same slice. Since there are only
few slices covering the entire myocardium, there is
not a high level of inter-slice coherency. The conse-
quence of this is that the skeleton of the myocardial
cross-section in one slice is generally not a good rep-
resentation of the myocardial cross-sections in neigh-
boring slices. The algorithm used for detection of
boundary fragments (as described in section 2.2) is
robust with respect to the exact location of the skele-
ton. That means that if the skeleton is completely
located on the myocardium, the algorithm will work
well, even if the skeleton is not a good approxima-
tion of the center line of the myocardial cross-section.
However, there is the possibility that after the skele-
ton has been copied from the source slice, parts of
it are not located on the cross-section of the heart
muscle in the destination slice. So, after copying, the
skeleton must be adapted such that the probability
of it being completely located inside the myocardium
also in the destination slice is maximized. This is
done by moving the skeleton to the region where the
myocardial cross-sections of source and destination
slices overlap.

First each voxel of the source slice is assigned a
value denoting the probability that it is contained in
the overlap region. This value p is 0 for all voxels
whose counterparts in the destination slice are not
part of the segmented myocardial cross-section. For
each other voxel V value p is calculated using the
following formula:

p = e
((vd−vs)/Ss)2

−2

with vd being the intensity value of the voxel, vs

the intensity value of the voxel’s counterpart in the
source slice and Ss the statistical standard deviation
of intensity values of the segmented cross-section in
the source slice. Next, the resulting field of prob-
ability values is low-pass filtered (blurred) a num-
ber of times. This yields three results: The num-
ber of local maxima is reduced, local maxima are
located on the overlap region with high probability,
and values ascend smoothly towards the local max-
ima. The skeleton is then replaced by a polygon
with some fixed number of vertices n. The polygon



Figure 3: left: connectivity gradient sizes, center: boundary fragments, right: chamfer distance map

Figure 4: boundary inflation: left: 1 iteration, center: 2 iterations, right: 12 iterations

Figure 5: left: source slice with skeleton, center: probability field, right: destination slice with adapted
skeleton



should be chosen such that the maximum distance
between the polygon and the initial skeleton is as
small as possible. Finally, each polygon vertex is
iteratively moved into the direction of steepest in-
crease in the probability field until it either reaches
a local maximum or further movement would reduce
its distance to a neighbor vertex below an allowed
minimum. This minimal distance prevents two ver-
tices collapsing into one. This is not allowed in order
to maintain the circular shape of the skeleton as far
as possible. If distances between vertices grow too
large, new vertices can be added. Figure 5 shows an
example of a skeleton being adapted. The image on
the left shows the initial skeleton on the source slice,
the center image shows the probability field and the
rightmost image depicts the final adapted skeleton
on the destination slice. Once all vertices have been
moved to the overlap region, the resulting skeleton
can be used to initiate segmentation of the destina-
tion slice.

3 Results

The algorithm presented in this paper proved to be a
usable technique for robust and accurate segmenta-
tion of cardiac MRI data sets. Detailed comparison
of results generated by this technique with results
of skilled manual segmentation revealed a deviation
ratio of 0.0431 on the average (with the deviation
ratio being the number of voxels which are part of
only one segmentation result - either manual or au-
tomatic - divided by the number of voxels being part
of one or both). As in every algorithm which propa-
gates a segmentation result over a number of slices,
an error happening in one slice can possibly accumu-
late during further propagation. Still, the algorithm
proved to work very robustly, propagating along a
distance of 10 slices or more. Significant errors usu-
ally occur only, if MRI artifacts result in too dis-
tinct data incoherencies which result in the skeleton
adaptation technique (see section 2.6) placing the
skeleton outside the myocardium. This, however, is
observed very rarely. Furthermore, experience has
shown that the algorithm usually manages to re-
cover after segmenting one or two slices erroneously.
Propagation in time dimension works in the same
way as propagation in space dimension. Segmenta-
tion of a complete four-dimensional cardiac data set
can therefore by accomplished after manually plac-
ing only one skeleton on one arbitrary slice in one
arbitrary volume. Segmentation of a 256× 256× 12
data set currently takes about 17 seconds on the av-
erage. The algorithm therefore works fast enough to

be used in daily clinical practice. It has been suc-
cessfully added to commercial PACS software (see
http://www.tiani.com).

4 Conclusions

A new semi-automatic algorithm for segmentation of
the myocardium from MRI volumes, using a simple
deformable model has been presented. It has been
shown that the technique works robustly and fast.
Robustness is increased by primarilly driving the de-
formation of the model by attracting it towards those
voxels which were identified to mark sharp bound-
aries of the myocardium. Robustness is further in-
creased by the model aligning to gradients in an im-
age made up of skeleton-voxel connectivity values in-
stead of plain image gradients. It has further been
shown that a result of segmenting one slice can be
propagated to the other slices in a stable way, there-
fore permitting segmentation of 3D and 4D data sets.
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