
High-Quality Two-Level Volume Rendering of Segmented Data Sets
on Consumer Graphics Hardware

Markus Hadwiger Christoph Berger Helwig Hauser ∗

VRVis Research Center, Austria

Figure 1: Segmented hand data set (256x128x256) with three objects: skin, blood vessels, and bone. Two-level volume rendering integrates
different transfer functions, rendering and compositing modes: (left) all objects rendered with shaded DVR; the skin partially obscures the
bone; (center) skin rendered with non-photorealistic contour rendering and MIP compositing, bones rendered with DVR, vessels with tone
shading; (right) skin rendered with MIP, bones with tone shading, and vessels with shaded iso-surfacing; the skin merely provides context.

Abstract
One of the most important goals in volume rendering is to be able to
visually separate and selectively enable specific objects of interest
contained in a single volumetric data set, which can be approached
by using explicit segmentation information. We show how seg-
mented data sets can be rendered interactively on current consumer
graphics hardware with high image quality and pixel-resolution fil-
tering of object boundaries. In order to enhance object perception,
we employ different levels of object distinction. First, each object
can be assigned an individual transfer function, multiple of which
can be applied in a single rendering pass. Second, different render-
ing modes such as direct volume rendering, iso-surfacing, and non-
photorealistic techniques can be selected for each object. A mini-
mal number of rendering passes is achieved by processing sets of
objects that share the same rendering mode in a single pass. Third,
local compositing modes such as alpha blending and MIP can be
selected for each object in addition to a single global mode, thus
enabling high-quality two-level volume rendering on GPUs.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: volume rendering, segmentation, non-photorealistic
rendering, consumer graphics hardware

∗mailto:{Hadwiger |Berger |Hauser }@VRVis.at,
http://www.VRVis.at/vis/

1 Introduction
In many volume rendering methods, all voxels contained in a vol-
umetric data set are treated in an identical manner, i.e., without us-
ing any a priori information that specifies object membership on a
per-voxel basis. In that case, visual distinction of objects is usu-
ally achieved by either using multiple semi-transparent iso-surfaces
or, more commonly, with direct volume rendering and an appropri-
ate transfer function. In the latter case, multi-dimensional transfer
functions [Kindlmann and Durkin 1998; Kniss et al. 2001] have
proven to be especially powerful in facilitating the perception of
different objects. In recent years, non-photorealistic volume render-
ing approaches [Ebert and Rheingans 2000; Csebfalvi et al. 2001;
Lu et al. 2002] have also been used successfully for improving the
perception of distinct objects embedded in a single volume.

However, it is also often the case that a single rendering method
or transfer function does not suffice in order to distinguish multi-
ple objects of interest according to a user’s specific needs. A very
powerful approach to tackling this problem is to create explicit ob-
ject membership information via segmentation [Udupa and Herman
1999], which usually yields one binary segmentation mask for each
object of interest, or an object ID for each of the volume’s voxels.

Unfortunately, integrating segmentation information and multi-
ple rendering modes with different sets of parameters into a fast
high-quality volume renderer is not a trivial problem, especially in
the case of consumer hardware volume rendering, which tends to
only be fast when all or most voxels can be treated identically. On
such hardware, one would also like to use a single segmentation
mask volume in order to use a minimal amount of texture mem-
ory. Graphics hardware cannot easily interpolate between voxels
belonging to different objects, however, and using the segmenta-
tion mask without filtering gives rise to artifacts. Thus, one of the
major obstacles in such a scenario is filtering object boundaries in
order to attain high quality in conjunction with consistent fragment
assignment and without introducing non-existent object IDs.

In this paper, we show how segmented volumetric data sets can
be rendered efficiently and with high quality on current consumer
graphics hardware. The segmentation information for object dis-

301

IEEE Visualization 2003,
October 19-24, 2003, Seattle, Washington, USA
0-7803-8120-3/03/$17.00 ©2003 IEEE

Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

tinction can be used at multiple levels of sophistication, and we de-
scribe how all of these different possibilities can be integrated into
a single coherent hardware volume rendering framework.

First, different objects can be rendered with the same rendering
technique (e.g., DVR), but with different transfer functions. Sep-
arate per-object transfer functions can be applied in a single ren-
dering pass even when object boundaries are filtered during render-
ing. On an ATI Radeon 9700, up to eight transfer functions can be
folded into a single rendering pass with linear boundary filtering.
If boundaries are only point-sampled, e.g., during interaction, an
arbitrary number of transfer functions can be used in a single pass.
However, the number of transfer functions with boundary filtering
in a single pass is no conceptual limitation and increases trivially on
architectures that allow more instructions in the fragment shader.

Second, different objects can be rendered using different hard-
ware fragment shaders. This allows easy integration of methods as
diverse as non-photorealistic and direct volume rendering, for in-
stance. Although each distinct fragment shader requires a separate
rendering pass, multiple objects using the same fragment shader
with different rendering parameters can effectively be combined
into a single pass. When multiple passes cannot be avoided, the
cost of individual passes is reduced drastically by executing expen-
sive fragment shaders only for those fragments active in a given
pass. These two properties allow highly interactive rendering of
segmented data sets, since even for data sets with many objects usu-
ally only a couple of different rendering modes are employed. We
have implemented direct volume rendering with post-classification,
pre-integrated classification [Engel et al. 2001], different shading
modes, non-polygonal iso-surfaces, and maximum intensity pro-
jection. See figures 1 and 2 for example images. In addition
to non-photorealistic contour enhancement [Csebfalvi et al. 2001]
(figure 1, center; figure 2, skull), we have also used a volumetric
adaptation of tone shading [Gooch et al. 1998] (figure 1, right),
which improves depth perception in contrast to standard shading.

Finally, different objects can also be rendered with different
compositing modes, e.g., alpha blending and maximum intensity
projection (MIP), for their contribution to a given pixel. These
per-object compositing modes are object-local and can be speci-
fied independently for each object. The individual contributions of
different objects to a single pixel can be combined via a separate
global compositing mode. This two-level approach to object com-
positing [Hauser et al. 2001] has proven to be very useful in order
to improve perception of individual objects.

In summary, the major novel contributions of this paper are:

• A systematic approach to minimizing both the number of ren-
dering passes and the performance cost of individual passes
when rendering segmented volume data with high quality on
current GPUs. Both filtering of object boundaries and the use
of different rendering parameters such as transfer functions do
not prevent using a single rendering pass for multiple objects.
Even so, each pass avoids execution of the corresponding po-
tentially expensive fragment shader for irrelevant fragments
by exploiting the early z-test. This reduces the performance
impact of the number of rendering passes drastically.

• An efficient method for mapping a single object ID volume
to and from a domain where filtering produces correct results
even when three or more objects are present in the volume.
The method is based on simple 1D texture lookups and able
to map and filter blocks of four objects simultaneously.

• An efficient object-order algorithm based on simple depth and
stencil buffer operations that achieves correct compositing of
objects with different per-object compositing modes and an
additional global compositing mode. The result is conceptu-
ally identical to being able to switch compositing modes for
any given group of samples along the ray for any given pixel.

Figure 2: Segmented head and neck data set (256x256x333) with
six different enabled objects. The skin and teeth are rendered as
MIP with different intensity ramps, the blood vessels and eyes are
rendered as shaded DVR, the skull uses contour rendering, and the
vertebrae use a gradient magnitude-weighted transfer function with
shaded DVR. A clipping plane has been applied to the skin object.

Related work

The framework presented in this paper is based on re-sampling and
rendering a volume via a stack of textured slices that are blended on
top of each other in either back-to-front or front-to-back order. For
this purpose, either view-aligned slices through 3D textures [Cullip
and Neumann 1993; Cabral et al. 1994; Westermann and Ertl 1998],
or object-aligned slices with 2D textures can be used. In the latter
case, intermediate slices can also be interpolated on-the-fly during
rendering in order to attain tri-linear interpolation [Rezk-Salama
et al. 2000]. The number of slices necessary for high-quality results
can be reduced drastically by considering two adjacent slices as
constituting a single slab and compensating for non-linear transfer
function changes within each slab via a lookup into a pre-integrated
transfer function table [Engel et al. 2001]. Multi-dimensional trans-
fer functions [Kindlmann and Durkin 1998] are a very important
tool for distinguishing different objects contained in a volume, es-
pecially when combined with an intuitive and interactive interface
for specifying them [Kniss et al. 2001]. In recent years, there also
has been a remarkable interest in non-photorealistic rendering tech-
niques such as tone shading [Gooch et al. 1998] that are increas-
ingly being applied to volumes [Ebert and Rheingans 2000; Cseb-
falvi et al. 2001; Lu et al. 2002]. If no segmentation information is
present, multiple rendering passes with one transfer function each
and non-photorealistic shading can be used in order to enhance per-
ception of individual objects [Lum and Ma 2002].

The idea of using two conceptual levels for compositing volu-
metric objects has first been described in the context of a fast soft-

302
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Figure 3: A single ray corresponding to a given image pixel is al-
lowed to pierce objects that use their own object-local compositing
mode. The contributions of different objects along a ray are com-
bined with a single global compositing mode. Rendering a seg-
mented data set with these two conceptual levels of compositing
(local and global) is known as two-level volume rendering .

ware two-level volume renderer [Hauser et al. 2001], and we refer
to this earlier work for detailed suggestions on when and how differ-
ent rendering and compositing modes together with appropriately
specified transfer functions can facilitate object perception.

The topic of image and volume segmentation is a huge area on its
own [Udupa and Herman 1999], and we simply treat the segmen-
tation information as additional a priori input data that are already
available for a given data set. In order to achieve high rendering
quality, it is necessary to distinguish individual objects with sub-
voxel precision [Tiede et al. 1998], i.e., what we refer to as pixel-
resolution boundary filtering. Even linear filtering of segmentation
data is not directly possible on graphics hardware when more than
two objects have been segmented, since object IDs cannot be in-
terpolated directly. Ultimately, rendering segmented data sets can
be viewed as being composed of multiple individual volumetric
clipping problems. Recent work has shown how to achieve high-
quality clipping in graphics hardware [Weiskopf et al. 2003], which
can also be combined with pre-integrated classification by adjusting
the lookup into the pre-integration table accordingly [Röttger et al.
2003]. However, it is not trivial to apply clipping approaches to the
rendering of segmented data as soon as the volume contains more
than two objects and high quality results and a minimal number of
rendering passes are desired. Excluding individual fragments from
processing by an expensive fragment shader via the early z-test is
also crucial in the context of GPU-based ray casting in order to be
able to terminate rays individually [Krüger and Westermann 2003].

2 Rendering segmented data sets
For rendering purposes, we simply assume that in addition to the
usual data such as a density and an optional gradient volume, a
segmentation mask volume is also available. If embedded objects
are represented as separate masks, we combine all of these masks
into a single volume that contains a single object ID for each voxel.
Hence we will also be calling this segmentation mask volume the
object ID volume. IDs are simply enumerated consecutively starting
with one, i.e., we do not assign individual bits to specific objects.
ID zero is reserved (see later sections). The object ID volume con-
sumes one byte per voxel and is either stored in its own 3D texture
in the case of view-aligned slicing, or in additional 2D slice textures
for all three slice stacks in the case of object-aligned slicing. With
respect to resolution, we have used the same resolution as the origi-
nal volume data, but all of the approaches we describe could easily
be used for volume and segmentation data of different resolutions.

In order to render a segmented data set, we determine object
membership of individual fragments by filtering object boundaries

Figure 4: Detecting changes in compositing mode for each indi-
vidual sample along a ray can be done exactly using two rendering
buffers (left), or approximately using only a single buffer (right).

in the hardware fragment shader (section 3). Object membership
determines which transfer function, rendering, and compositing
modes should be used for a given fragment. We render the vol-
ume in a number of rendering passes that is basically independent
of the number of contained objects. It most of all depends on the
required number of different hardware configurations that cannot
be changed during a single pass, i.e., the fragment shader and com-
positing mode. Objects that can share a given configuration can
be rendered in a single pass. This also extends to the application of
multiple per-object transfer functions (section 4) and thus the actual
number of rendering passes is usually much lower than the number
of objects or transfer functions. It depends on several major factors:

Enabled objects. If all the objects rendered in a given pass have
been disabled by the user, the entire rendering pass can be skipped.
If only some of the objects are disabled, the number of passes stays
the same, independent of the order of object IDs. Objects are dis-
abled by changing a single entry of a 1D lookup texture. Addi-
tionally, per-object clipping planes can be enabled. In this case, all
objects rendered in the same pass are clipped identically, however.

Rendering modes. The rendering mode, implemented as an ac-
tual hardware fragment shader, determines what and how volume
data is re-sampled and shaded. Since it cannot be changed during
a single rendering pass, another pass must be used if a different
fragment shader is required. However, many objects often use the
same basic rendering mode and thus fragment shader, e.g., DVR
and iso-surfacing are usually used for a large number of objects.

Transfer functions. Much more often than the basic rendering
mode, a change of the transfer function is required. For instance,
all objects rendered with DVR usually have their own individual
transfer functions. In order to avoid an excessive number of ren-
dering passes due to simple transfer function changes, we apply
multiple transfer functions to different objects in a single rendering
pass while still retaining adequate filtering quality (section 4).

Compositing modes. Although usually considered a part of
the rendering mode, compositing is a totally separate operation in
graphics hardware. Where the basic rendering mode is determined
by the fragment shader, the compositing mode is specified as blend
function and equation in OpenGL, for instance. Changing the com-
positing mode happens even more infrequently than changing the
basic rendering mode, e.g., alpha blending is used in conjunction
with both DVR and tone shading.

Different compositing modes per object also imply that the (con-
ceptual) ray corresponding to a single pixel must be able to com-
bine the contribution of these different modes (figure 3). Especially
in the context of texture-based hardware volume rendering, where
no actual rays exist and we want to obtain the same result with an
object-order approach instead, we have to use special care when
compositing. In order to ensure correct compositing, we are using
two render buffers and track the current compositing mode for each
pixel. Whenever the compositing mode changes for a given pixel,
the already composited part is transferred from the local composit-
ing buffer into the global compositing buffer. Section 5 shows that
this can actually be done very efficiently without explicitly consid-
ering individual pixels, while still achieving the same compositing
behavior as a ray-oriented image-order approach, which is crucial
for achieving high quality. For faster rendering we allow falling
back to single-buffer compositing during interaction (figure 4).

303
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

2.1 Basic rendering loop
We will now outline the basic rendering loop that we are using for
each frame. Table 1 gives a high-level overview.

Although the user is dealing with individual objects, we automat-
ically collect all objects that can be processed in the same rendering
pass into an object set at the beginning of each frame. For each ob-
ject set, we generate an object set membership texture, which is a
1D lookup table that determines the objects belonging to the set. In
order to further distinguish different transfer functions in a single
object set, we also generate 1D transfer function assignment tex-
tures. Both of these types of textures are shown in figure 5 and
described in sections 2.3, 3, and 4. After this setup, the entire slice
stack is rendered. Each slice must be rendered for every object set
containing an object that intersects the slice, which is determined in
a pre-process. If there is more than a single object set for the cur-
rent slice, we optionally render all object set IDs of the slice into the
depth buffer before rendering any actual slice data. This enables us
to exploit the early z-test during all subsequent passes for each ob-
ject set, see below. For performance reasons, we never use object
ID filtering in this pass, which allows only conservative fragment
culling via the depth test. Exact fragment rejection is done in the
fragment shader. Before a slice can be rendered for any object set,
the fragment shader and compositing mode corresponding to this
set must be activated. Using the two types of textures mentioned
above, the fragment shader filters boundaries, rejects fragments not
corresponding to the current pass, and applies the correct transfer
function. In order to attain two compositing levels, slices are ren-
dered into a local buffer, as already outlined above. Before render-
ing the current slice, those pixels where the local compositing mode
differs from the previous slice are transferred from the local into the
global buffer using the global compositing mode. After this trans-
fer, the transferred pixels are cleared in the local buffer to ensure
correct local compositing for subsequent pixels. In the case when
only a single compositing buffer is used for approximate composit-
ing, the local to global buffer transfer and clear are not executed.

2.2 Conservative fragment culling via early z-test
On current graphics hardware, it is possible to avoid execution of
the fragment shader for fragments where the depth test fails as long
as the shader does not modify the depth value of the fragment. This
early z-test is crucial to improving performance when multiple ren-
dering passes have to be performed for each slice. If the current
slice’s object set IDs have been written into the depth buffer before,
see above, we conservatively reject fragments not belonging to the
current object set even before the corresponding fragment shader is
started. In order to do this, we use a depth test of GL EQUAL and
configure the vertex shader to generate a constant depth value for
each fragment that exactly matches the current object set ID.

DetermineObjectSets();
CreateObjectSetMembershipTextures();
CreateTFAssignmentTextures();
FOR each slice DO

TransferLocalBufferIntoGlobalBuffer();
ClearTransferredPixelsInLocalBuffer();
RenderObjectIdDepthImageForEarlyZTest();
FOR each object set with an object in slice DO

SetupObjectSetFragmentRejection();
SetupObjectSetTFAssignment();
ActivateObjectSetFragmentShader();
ActivateObjectSetCompositingMode();
RenderSliceIntoLocalBuffer();

Table 1: The basic rendering loop that we are using. Object set
membership can change every time an object’s rendering or com-
positing mode is changed, or an object is enabled or disabled.

2.3 Fragment shader operations
Most of the work in volume renderers for consumer graphics hard-
ware is done in the fragment shader, i.e., at the granularity of indi-
vidual fragments and, ultimately, pixels. In contrast to approaches
using lookup tables, i.e., paletted textures, we are performing all
shading operations procedurally in the fragment shader. Section 6
contains details about the actual volume shading models we are us-
ing. However, we are most of all interested in the operations that are
required for rendering segmented data. The two basic operations in
the fragment shader with respect to the segmentation mask are frag-
ment rejection and per-fragment application of transfer functions:

Fragment rejection. Fragments corresponding to object IDs
that cannot be rendered in the current rendering pass, e.g., because
they need a different fragment shader or compositing mode, have to
be rejected. They, in turn, will be rendered in another pass, which
uses an appropriately adjusted rejection comparison. For fragment
rejection, we do not compare object IDs individually, but use 1D
lookup textures that contain a binary membership status for each
object (figure 5, left). All objects that can be rendered in the same
pass belong to the same object set, and the corresponding object
set membership texture contains ones at exactly those texture co-
ordinates corresponding to the IDs of these objects, and zeros ev-
erywhere else. The re-generation of these textures at the beginning
of each frame, which is negligible in terms of performance, also
makes turning individual objects on and off trivial. Exactly one ob-
ject set membership texture is active for a given rendering pass and
makes the task of fragment rejection trivial if the object ID volume
is point-sampled. When object IDs are filtered, it is also crucial to
map individual IDs to zero or one before actually filtering them.
Details are given in section 3, but basically we are using object set
membership textures to do a binary classification of input IDs to
the filter, and interpolate after this mapping. The result can then be
mapped back to zero or one for fragment rejection.

Per-fragment transfer function application. Since we apply
different transfer functions to multiple objects in a single rendering
pass, the transfer function must be applied to individual fragments
based on their density value and corresponding object ID. Instead of
sampling multiple one-dimensional transfer function textures, we
sample a single global two-dimensional transfer function texture
(figure 6). This texture is not only shared between all objects of an
object set, but also between all object sets. It is indexed with one
texture coordinate corresponding to the object ID, the other one to
the actual density. Because we would like to filter linearly along the
axis of the actual transfer function, but use point-sampling along the
axis of object IDs, we store each transfer function twice at adjacent
locations in order to guarantee point-sampling for IDs, while we are
using linear interpolation for the entire texture. We have applied

Figure 5: Object set membership textures (left; three 1D intensity
textures for three sets containing three, two, and one object, re-
spectively) contain a binary membership status for each object in a
set that can be used for filtering object IDs and culling fragments.
Transfer function assignment textures (right; one 1D RGBA tex-
ture for distinction of four transfer functions) are used to filter four
object boundaries simultaneously and determine the corresponding
transfer function via a simple dot product.

304
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

this scheme only to 1D transfer functions, but general 2D transfer
functions could also be implemented via 3D textures of just a few
layers in depth, i.e., the number of different transfer functions.

We are using an extended version of the pixel-resolution filter
that we employ for fragment rejection in order to determine which
of multiple transfer functions in the same rendering pass a frag-
ment should actually use. Basically, the fragment shader uses mul-
tiple RGBA transfer function assignment textures (figure 5, right)
for both determining the transfer function and rejecting fragments,
instead of a single object set membership texture with only a single
color channel. Each one of these textures allows filtering the object
ID volume with respect to four object boundaries simultaneously.
A single lookup yields binary membership classification of a frag-
ment with respect to four objects. The resulting RGBA member-
ship vectors can then be interpolated directly. The main operation
for mapping back the result to an object ID is a simple dot product
with a constant vector of object IDs. If the result is the non-existent
object ID of zero, the fragment needs to be rejected. The details
are described in section 4. This concept can be extended trivially
to objects sharing transfer functions by using transfer function IDs
instead of object IDs. The following two sections will now describe
filtering of object boundaries at sub-voxel precision in more detail.

3 Pixel-resolution boundaries
One of the most crucial parts of rendering segmented volumes with
high quality is that the object boundaries must be calculated dur-
ing rendering at the pixel resolution of the output image, instead
of the voxel resolution of the segmentation volume. Figure 7 (left)
shows that simply point-sampling the object ID texture leads to ob-
ject boundaries that are easily discernible as individual voxels. That
is, simply retrieving the object ID for a given fragment from the seg-
mentation volume is trivial, but causes artifacts. Instead, the object
ID must be determined via filtering for each fragment individually,
thus achieving pixel-resolution boundaries.

Unfortunately, filtering of object boundaries cannot be done di-
rectly using the hardware-native linear interpolation, since direct
interpolation of numerical object IDs leads to incorrectly interpo-
lated intermediate values when more than two different objects are
present. When filtering object IDs, a threshold value st must be
chosen that determines which object a given fragment belongs to,
which is essentially an iso-surfacing problem. However, this can-
not be done if three or more objects are contained in the volume,
which is illustrated in the top row of figure 8. In that case, it is
not possible to choose a single st for the entire volume. The cru-
cial observation to make in order to solve this problem is that the
segmentation volume must be filtered as a successive series of bi-
nary volumes in order to achieve proper filtering [Tiede et al. 1998],
which is shown in the second row of figure 8. Mapping all object
IDs of the current object set to 1.0 and all other IDs to 0.0 allows
using a global threshold value st of 0.5. We of course do not want
to store these binary volumes explicitly, but perform this mapping
on-the-fly in the fragment shader by indexing the object set mem-
bership texture that is active in the current rendering pass. Filtering

Figure 6: Instead of multiple one-dimensional transfer functions
for different objects, we are using a single global two-dimensional
transfer function texture. After determining the object ID for the
current fragment via filtering, the fragment shader appropriately
samples this texture with (density, object id) texture coordinates.

Figure 7: Object boundaries with voxel resolution (left) vs. object
boundaries determined per-fragment with linear filtering (right).

in the other passes simply uses an alternate binary mapping, i.e.,
other object set membership textures. One problem with respect to
a hardware implementation of this approach is that texture filtering
happens before the sampled values can be altered in the fragment
shader. Therefore, we perform filtering of object IDs directly in the
fragment shader. Note that our approach could in part also be imple-
mented using texture palettes and hardware-native linear interpola-
tion, with the restriction that not more than four transfer functions
can be applied in a single rendering pass (section 4). However, we
have chosen to perform all filtering in the fragment shader in order
to create a coherent framework with a potentially unlimited number
of transfer functions in a single rendering pass and prepare for the
possible use of cubic boundary filtering in the future.

After filtering yields values in the range [0.0, 1.0], we once again
come to a binary decision whether a given fragment belongs to the
current object set by comparing with a threshold value of 0.5 and
rejecting fragments with an interpolated value below this threshold
(figure 8, third row). Actual rejection of fragments is done using
the KIL instruction of the hardware fragment shader.

Linear boundary filtering. For object-aligned volume slices,
bi-linear interpolation is done by setting the hardware filtering
mode for the object ID texture to nearest-neighbor and sampling
it four times with offsets of whole texels in order to get access to
the four ID values needed for interpolation. Before actual inter-
polation takes place, the four object IDs are individually mapped
to 0.0 or 1.0, respectively, using the current object set member-
ship texture. We perform the actual interpolation using a variant of
texture-based filtering [Hadwiger et al. 2001], which proved to be
both faster and use fewer instructions than using LRP instructions.
With this approach, bi-linear weight calculation and interpolation
can be reduced to just one texture fetch and one dot product. When
intermediate slices are interpolated on-the-fly [Rezk-Salama et al.
2000], or view-aligned slices are used, eight instead of four input
IDs have to be used in order to perform tri-linear interpolation.

Figure 8: Each fragment must be assigned an exactly defined object
ID after filtering. Here, IDs 3, 4, and 5 are interpolated, yielding the
values shown in blue. Top row: choosing a single threshold value
st that works everywhere is not possible for three or more objects.
Second row: object IDs must be converted to 0.0 or 1.0 in the frag-
ment shader before interpolation, which allows using a global st of
0.5. After thresholding, fragments can be culled accordingly (third
row; see section 3), or mapped back to an object ID in order to apply
the corresponding transfer function (fourth row; see section 4).

305
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

Figure 9: Selecting the transfer function on a per-fragment basis.
In the left image, point-sampling of the object ID volume has been
used, whereas in the right image procedural linear interpolation in
the fragment shader achieves results of much better quality.

Combination with pre-integration. The combination of pre-
integration [Engel et al. 2001] and high-quality clipping has been
described recently [Röttger et al. 2003]. Since our filtering method
effectively reduces the segmentation problem to a clipping problem
on-the-fly, we are using the same approach after we have mapped
object IDs to 0.0 or 1.0, respectively. In this case, the interpolated
binary values must be used for adjusting the pre-integration lookup.

4 Multiple per-object transfer functions
in a single rendering pass

In addition to simply determining whether a given fragment be-
longs to a currently active object or not, which has been described
in the previous section, this filtering approach can be extended to
the application of multiple transfer functions in a single rendering
pass without sacrificing filtering quality. Figure 9 shows the differ-
ence in quality for two objects with different transfer functions (one
entirely red, the other entirely yellow for illustration purposes).

In this case, we perform several almost identical filtering steps in
the fragment shader, where each of these steps simultaneously fil-
ters the object boundaries of four different objects. After the frag-
ment’s object ID has been determined via filtering, it can be used to
access the global transfer function table as described in section 2.3
and illustrated in figure 6. For multiple simultaneous transfer func-
tions, we do not use object set membership textures but the similar
extended concept of transfer function assignment textures, which is
illustrated in the right image of figure 5. Each of these textures can
be used for filtering the object ID volume with respect to four dif-
ferent object IDs at the same time by using the four channels of an
RGBA texture in order to perform four simultaneous binary classi-
fication operations. In order to create these textures, each object set
membership texture is converted into

⌈
#objects/4

⌉
transfer func-

tion assignment textures, where #objects denotes the number of
objects with different transfer functions in a given object set. All
values of 1.0 corresponding to the first transfer function are stored
into the red channel of this texture, those corresponding to the sec-
ond transfer function into the green channel, and so on.

In the fragment shader, bi-linear interpolation must index this
texture at four different locations given by the object IDs of the
four input values to interpolate. This classifies the four input object
IDs with respect to four objects with just four 1D texture sampling
operations. A single linear interpolation step yields the linear in-
terpolation of these four object classifications, which can then be
compared against a threshold of (0.5, 0.5, 0.5, 0.5), also requiring
only a single operation for four objects. Interpolation and thresh-
olding yields a vector with at most one component of 1.0, the other
components set to 0.0. In order for this to be true, we require that
interpolated and thresholded repeated binary classifications never
overlap, which is not guaranteed for all types of filter kernels. In

the case of bi-linear or tri-linear interpolation, however, overlaps
can never occur [Tiede et al. 1998]. The final step that has to be
performed is mapping the binary classification to the desired object
ID. We do this via a single dot product with a vector containing the
four object IDs corresponding to the four channels of the transfer
function assignment texture (figure 5, right). By calculating this dot
product, we multiply exactly the object ID that should be assigned
to the final fragment by 1.0. The other object IDs are multiplied by
0.0 and thus do not change the result. If the result of the dot prod-
uct is 0.0, the fragment does not belong to any of the objects under
consideration and can be culled. Note that exactly for this reason,
we do not use object IDs of zero. For the application of more than
four transfer functions in a single rendering pass, the steps outlined
above can be executed multiple times in the fragment shader. The
results of the individual dot products are simply summed up, once
again yielding the ID of the object that the current fragment be-
longs to. Note that the calculation of filter weights is only required
once, irrespective of the number of simultaneous transfer functions,
which is also true for sampling the original object ID textures.

Equation 1 gives the major fragment shader resource require-
ments of our filtering and binary classification approach for the case
of bi-linear interpolation with LRP instructions:

4TEX 2D + 4
⌈

#objects

4

⌉
TEX 1D + 3

⌈
#objects

4

⌉
LRP, (1)

in addition to one dot product and one thresholding operation (e.g.,
DP4 and SGE instructions, respectively) for every

⌈
#objects/4

⌉
transfer functions evaluated in a single pass. Similarly to the alter-
native linear interpolation using texture-based filtering that we have
outlined in section 3, procedural weight calculation and the LRP in-
structions can once again also be substituted by texture fetches and
a few cheaper ALU instructions. On the Radeon 9700, we are cur-
rently able to combine high-quality shading with up to eight transfer
functions in the same fragment shader, i.e., we are using up to two
transfer function assignment textures in a single rendering pass.

5 Separation of compositing modes
The final component of our framework with respect to the separa-
tion of different objects is the possibility to use individual object-
local compositing modes, as well as a single global compositing
mode. The local compositing modes that can currently be selected
are alpha blending (e.g., for DVR or tone shading), maximum in-
tensity projection (e.g., for MIP or contour enhancement), and iso-
surface rendering. Global compositing can either be done by alpha
blending, MIP, or a simple add of all contributions.

Although the basic concept is best explained using an image-
order approach, i.e., individual rays (figure 3), in the context of
texture-based volume rendering we have to implement it in object-
order. As described in section 2, we are using two separate render-
ing buffers, a local and a global compositing buffer, respectively.
Actual volume slices are only rendered into the local buffer, using

TransferLocalBufferIntoGlobalBuffer() {
ActivateContextGlobalBuffer();
DepthTest(NOT EQUAL);
StencilTest(RENDER ALWAYS, SET ONE);
RenderSliceCompositingIds(DEPTH BUFFER);
DepthTest(DISABLE);
StencilTest(RENDER WHERE ONE, SET ZERO);
RenderLocalBufferImage(COLOR BUFFER);

}
Table 2: Detecting for all pixels simultaneously where the com-
positing mode changes from one slice to the next, and transferring
those pixels from the local into the global compositing buffer.

306
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

the appropriate local compositing mode. When a new fragment has
a different local compositing mode than the pixel that is currently
stored in the local buffer, that pixel has to be transferred into the
global buffer using the global compositing mode. Afterward, these
transferred pixels have to be cleared in the local buffer before the
corresponding new fragment is rendered. Naturally, it is important
that both the detection of a change in compositing mode and the
transfer and clear of pixels is done for all pixels simultaneously.

In order to do this, we are using the depth buffer of both the local
and the global compositing buffer to track the current local com-
positing mode of each pixel, and the stencil buffer to selectively
enable pixels where the mode changes from one slice to the next.
Before actually rendering a slice (see table 1), we render IDs corre-
sponding to the local compositing mode into both the local and the
global buffer’s depth buffer. During these passes, the stencil buffer
is set to one where the ID already stored in the depth buffer (from
previous passes) differs from the ID that is currently being rendered.
This gives us both an updated ID image in the depth buffer, and a
stencil buffer that identifies exactly those pixels where a change in
compositing mode has been detected. We then render the image of
the local buffer into the global buffer. Due to the stencil test, pix-
els will only be rendered where the compositing mode has actually
changed. Table 2 gives pseudo code for what is happening in the
global buffer. Clearing the just transferred pixels in the local buffer
works almost identically. The only difference is that in this case we
do not render the image of another buffer, but simply a quad with
all pixels set to zero. Due to the stencil test, pixels will only be
cleared where the compositing mode has actually changed.

Note that all these additional rendering passes are much faster
than the passes actually rendering and shading volume slices. They
are independent of the number of objects and use extremely sim-
ple fragment shaders. However, the buffer/context switching over-
head is quite noticeable, and thus correct separation of composit-
ing modes can be turned off during interaction. Figure 4 shows
a comparison between approximate and correct compositing with
one and two compositing buffers, respectively. Performance num-
bers can be found in table 3. When only a single buffer is used,
the compositing mode is simply switched according to each new
fragment without avoiding interference with the previous contents
of the frame buffer. The visual difference depends highly on the
combination of compositing modes and spatial locations of objects.
The example in figure 4 uses MIP and DVR compositing in order
to highlight the potential differences. However, using approximate
compositing is very useful for faster rendering, and often exhibits
little or no loss in quality. Also, it is possible to get an almost seam-
less performance/quality trade-off between the two, by performing
the buffer transfer only every n slices instead of every slice.

6 Rendering modes, performance
This section provides details on the actual rendering modes we
are supporting, as well as some performance figures. We can use
object-aligned slices with 2D textures, possibly with slice interpo-
lation [Rezk-Salama et al. 2000], view-aligned slices with 3D tex-
tures, and slab instead of slice rendering for pre-integration [Engel
et al. 2001]. Gradients can be pre-computed either via central dif-
ferencing or a 3x3x3 Sobel operator, and are stored into a RGB
texture in normalized form for sampling by the fragment shader.

Direct volume rendering. We have implemented both post-
classification and pre-integrated classification [Engel et al. 2001].
Both of these modes can either be unshaded or shaded, optionally
weighted with gradient magnitude [Levoy 1988].

Iso-surfacing. We support rendering of non-polygonal shaded
iso-surfaces via the OpenGL alpha test [Westermann and Ertl 1998]
and pre-integrated iso-surfaces [Engel et al. 2001], respectively.

Maximum intensity projection. The maximum intensity of all
fragments corresponding to a given pixel can be retained in the

Figure 10: Segmented head and neck data set (256x256x333) with
eight different enabled objects – brain: tone shading; skin: contour
enhancement with clipping plane; eyes and spine: shaded DVR;
skull, teeth, and vertebrae: unshaded DVR; trachea: MIP.

frame buffer by using the GL MAX compositing mode. Prior to this,
the volume density is mapped through a monochrome transfer func-
tion and afterward multiplied by a constant color.

Contour enhancement. As one of two non-photorealistic ren-
dering modes, we have adopted a contour shading model [Csebfalvi
et al. 2001]. The intensity of a fragment is determined procedurally
in the fragment shader by evaluating equation 2:

I = g
(
|∇|

)
·
(
1 − |V · ∇|

)8
, (2)

where V is the viewing vector, ∇ denotes the gradient of a given
voxel, and g() is a windowing function for the gradient magnitude.
We specify g() through the usual transfer function interface, where
the alpha component is the weighting factor for the view-dependent
part, and the RGB components are simply neglected. The fragment
intensity can be multiplied by a constant contour color; fragment
alpha is set equal to I . The compositing mode for contours is MIP.

Tone shading. In order to enhance depth perception, we are also
using tone shading [Gooch et al. 1998] adapted to volumes:

I =

(
1 + L · ∇

2

)
ka +

(
1 − 1 + L · ∇

2

)
kb, (3)

where L denotes the light vector. The two colors to interpolate,
ka and kb, are derived from two constant colors kcool and kwarm

and the color from the transfer function kt, using two user-specified
factors α and β that determine the additive contribution of kt:

ka = kcool + αkt (4)

kb = kwarm + βkt (5)

307
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

#slices #obj composit. single multi+ztest multi

128 3 one buff. 48 (16.2) 29.2 (15.4) 19.3 (6.8)

128 3 two buff. 7 (3.9) 6.2 (3.2) 5 (1.9)

128 8 one buff. 48 (11.3) 15.5 (10) 7 (2.1)

128 8 two buff. 7 (3.2) 5.4 (3) 2.5 (0.7)

256 3 one buff. 29 (9.1) 15.6 (8.2) 11 (3.4)

256 3 two buff. 3.5 (2) 3.2 (1.8) 2.5 (1.1)

256 8 one buff. 29 (5.3) 8.2 (5.2) 3.7 (1.1)

256 8 two buff. 3.5 (1.7) 3.1 (1.6) 1.2 (0.4)

Table 3: Performance on ATI Radeon 9700; 512x512 viewport;
256x128x256 data set; three and eight enabled objects, respectively.
Numbers are in frames per second. Compositing is done with ei-
ther one or two buffers, respectively. The multi column with early
z-testing turned off is only shown for comparison purposes.

Performance. Actual rendering performance depends on a lot of
different factors, so table 3 shows only some example figures. In or-
der to concentrate on performance of rendering segmented data, all
rates have been measured with unshaded DVR. Slices were object-
aligned; objects were rendered all in a single pass (single) or in one
pass per object (multi+ztest). Compositing performance is indepen-
dent of the rendering mode, i.e., can also be measured with DVR for
all objects. Frame rates in parentheses are with linear boundary fil-
tering enabled, other rates are for point-sampling during interaction.
Note that in the unfiltered case with a single rendering pass for all
objects, the performance is independent of the number of objects. If
more complex fragment shaders than unshaded DVR are used, the
relative performance speed-up of multi+ztest versus multi increases
further toward single performance, i.e., the additional overhead of
writing object set IDs into the depth buffer becomes negligible.

7 Conclusions and future work
We have shown how segmented volumes can be rendered at interac-
tive rates with high quality on current consumer graphics hardware
such as the ATI Radeon 9700. The segmentation mask is filtered
on-the-fly in the fragment shader, which provides greater flexibility
and facilitates using higher-order filtering in the future. In general,
we are expecting a move toward programmable filtering via proce-
dural or texture-based filter kernels for a lot of applications in the
near future. This has just become possible on the most recent archi-
tectures, but as instruction count limits in the fragment shader rise
or are even removed, these approaches are rapidly becoming fea-
sible. All the algorithms we have presented are meant to take the
possibilities of future hardware into account. The current restric-
tion to eight simultaneous transfer functions with object ID filtering
is solely due to the instruction count limit of our target hardware,
and increases trivially with more instructions. In general, we en-
sure a minimal number of rendering passes by only falling back to
individual passes for changes of the hardware configuration where
an on-the-fly adaptation is currently impossible, i.e., the fragment
shader and compositing mode. When fragment shader adaptation
on a per-pixel basis becomes possible, our framework will require
only minor changes. In the future, we would like to incorporate cu-
bic boundary filtering [Hadwiger et al. 2001], and extend the com-
bination with pre-integrated classification [Röttger et al. 2003] for
application of multiple pre-integrated transfer functions in a single
rendering pass. In addition or as an alternative to the early z-test,
texture hulls [Li and Kaufman 2002] could be used to minimize the
number of fragments that are rendered without any contribution.

Acknowledgments
We would like to thank Christof Rezk-Salama, Thomas Theußl, Klaus Engel, Matej
Mlejnek, André Neubauer, Lukas Mroz, Ivan Viola, Torsten Möller, Joe Kniss, and
Rüdiger Westermann for much-appreciated contributions and discussions, and Michael
Doggett from ATI for providing a Radeon 9700. The data sets we have used are cour-
tesy of Tiani Medgraph. This work has been done in the basic research on visualization
at the VRVis Research Center, which is funded by the Austrian Kplus project.

References
CABRAL, B., CAM, N., AND FORAN, J. 1994. Accelerated volume ren-

dering and tomographic reconstruction using texture mapping hardware.
In Proceedings of IEEE Symposium on Volume Visualization, 91–98.

CSEBFALVI, B., MROZ, L., HAUSER, H., KÖNIG, A., AND GRÖLLER,
M. E. 2001. Fast visualization of object contours by non-photorealistic
volume rendering. In Proceedings of EUROGRAPHICS 2001, 452–460.

CULLIP, T. J., AND NEUMANN, U. 1993. Accelerating volume reconstruc-
tion with 3D texture mapping hardware. Tech. Rep. TR93-027, UNC,
Chapel Hill.

EBERT, D., AND RHEINGANS, P. 2000. Volume illustration: Non-
photorealistic rendering of volume models. In Proceedings of IEEE Vi-
sualization 2000, 195–202.

ENGEL, K., KRAUS, M., AND ERTL, T. 2001. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proceed-
ings of Graphics Hardware 2001, 9–16.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A non-
photorealistic lighting model for automatic technical illustration. In Pro-
ceedings of SIGGRAPH ’98, 447–452.

HADWIGER, M., THEUSSL, T., HAUSER, H., AND GRÖLLER, E. 2001.
Hardware-accelerated high-quality filtering on PC hardware. In Proceed-
ings of Vision, Modeling, and Visualization 2001, 105–112.

HAUSER, H., MROZ, L., BISCHI, G.-I., AND GRÖLLER, E. 2001. Two-
level volume rendering. IEEE Transactions on Visualization and Com-
puter Graphics 7, 3, 242–252.

KINDLMANN, G., AND DURKIN, J. 1998. Semi-automatic generation of
transfer functions for direct volume rendering. In Proceedings of IEEE
Volume Visualization ’98, 79–86.

KNISS, J., KINDLMANN, G., AND HANSEN, C. 2001. Multi-dimensional
transfer functions for interactive volume rendering. In Proceedings of
IEEE Visualization 2001, 255–262.

KRÜGER, J., AND WESTERMANN, R. 2003. Acceleration techniques for
GPU-based volume rendering. In Proceedings of IEEE Visualization ’03.

LACROUTE, P., AND LEVOY, M. 1994. Fast volume rendering using a
shear-warp factorization of the viewing transformation. In Proceedings
of SIGGRAPH ’94, 451–458.

LEVOY, M. 1988. Display of surfaces from volume data. IEEE Computer
Graphics and Applications 8, 3 (May), 29–37.

LI, W., AND KAUFMAN, A. 2002. Accelerating volume rendering with
texture hulls. In Proceedings of IEEE VolVis 2002, 115–122.

LUM, E. B., AND MA, K.-L. 2002. Hardware-accelerated parallel non-
photorealistic volume rendering. In Proceedings of NPAR 2002.

LU, A., MORRIS, C., EBERT, D., RHEINGANS, P., AND HANSEN, C.
2002. Non-photorealistic volume rendering using stippling techniques.
In Proceedings of IEEE Visualization 2002, 211–218.

REZK-SALAMA, C., ENGEL, K., BAUER, M., GREINER, G., AND ERTL,
T. 2000. Interactive volume rendering on standard PC graphics hard-
ware using multi-textures and multi-stage rasterization. In Proceedings
of Graphics Hardware 2000.

RÖTTGER, S., GUTHE, S., WEISKOPF, D., ERTL, T., AND STRASSER, W.
2003. Smart hardware-accelerated volume rendering. In Proceedings of
VisSym 2003, 231–238.

TIEDE, U., SCHIEMANN, T., AND HÖHNE, K. H. 1998. High quality ren-
dering of attributed volume data. In Proceedings of IEEE Visualization
’98, 255–262.

UDUPA, K. K., AND HERMAN, G. T. 1999. 3D Imaging in Medicine. CRC
Press.

WEISKOPF, D., ENGEL, K., AND ERTL, T. 2003. Interactive clipping
techniques for texture-based volume visualization and volume shading.
IEEE Transactions on Visualization and Computer Graphics 9, 3, 298–
312.

WESTERMANN, R., AND ERTL, T. 1998. Efficiently using graph-
ics hardware in volume rendering applications. In Proceedings of
SIGGRAPH ’98, 169–178.

308
Proceedings of the 14th IEEE Visualization Conference (VIS’03)
0-7695-2030-8/03 $ 17.00 © 2003 IEEE

