
Optimized Stereo Reconstruction Using 3D Graphics Hardware

Christopher Zach, Andreas Klaus, Bernhard Reitinger∗ and Konrad Karner

August 28, 2003

Abstract

In this paper we describe significant enhancements of
our recently developed stereo reconstruction software
exploiting features of commodity 3D graphics hard-
ware. The aim of our research is the acceleration of
dense reconstructions from stereo images. The im-
plementation of our hardware based matching proce-
dure avoids loss of accuracy due to the limited preci-
sion of calculations performed in 3D graphics proces-
sors. In this work we target on improving the time
to obtain reconstructions for images with small res-
olution, and we covered other enhancements to in-
crease the speed for highly detailed reconstructions.
Our optimized implementation is able to generate
up to 130 000 depth values per second on standard
PC hardware. Additionally we extend the original
epipolar reconstruction approach to estimate dispar-
ities between two images without known orientation.
Therefore we can calculate e.g. the optical flow be-
tween successive images using 3D hardware.

1 Introduction

The automatic creation of digital 3D models from im-
ages of real objects comprise a main step in the gen-
eration of virtual environments and is still a challeng-
ing research topic. Many stereo reconstruction algo-
rithms to obtain models from images were proposed,
and almost all approaches are based on traditional
computations performed in the main CPU. Very re-
cently few methods were proposed, that exploit the
parallelism and special-purpose circuits found in cur-
rent 3D graphics hardware to accelerate the recon-
struction process.

In our earlier work [20] we proposed a hierarchi-
cal, area-based stereo matching procedure on pro-
grammable 3D graphics hardware. Although the
method is still significantly slower than the plane
sweeping approach proposed by Yang et al. [19] (us-
ing a five camera setup), our approach provides good
results with a calibrated stereo setup. Additionally
the domain of achieved depth values is larger due to
the local mesh refinements employed in our method.

In this work we present substantial performance
enhancements of our matching procedure without los-
ing accuracy. The key idea is the amortization of
computations across several iterations of the algo-
rithm. Further, we implement a disparity matching
method to calculate the optical flow between two im-
ages.

After a section on related work we briefly out-
line our original hardware-based stereo reconstruc-
tion method in Section 3. Our recent improvements
are presented in Sections 4–7. Section 8 presents
benchmark comparisons between the original and
new method to illustrate the achieved performance
gain, and finally we outline future work.

2 Related Work

2.1 Reconstruction from Stereo Im-
ages

Stereo matching is the process of finding correspond-
ing or homologous points in two or more images and
is an essential task in computer vision.

We distinguish between feature and area based
methods. Feature based methods incline to sparse
but accurate results, whereas area based methods de-

1



liver dense point clouds. The former methods use lo-
cal features that are extracted from intensity or color
distribution. These extracted feature vectors are uti-
lized to solve the correspondence problem. Area
based methods employ a similarity constraint, where
corresponding points are assumed to have similar in-
tensity or color within a local window. Frequently it
is necessary to incorporate a continuity constraint to
obtain better reconstructions in homogeneously tex-
tured regions. If the relative orientations of the im-
ages are known, the search for corresponding points
can be restricted to epipolar lines and the search
problem is only one-dimensional. This leads to sig-
nificant improvements in accuracy as well in perfor-
mance. A good collection and comparison of differ-
ent matching methods can be found in [3]. Brown
et al. [1] give an overview of recent developments of
stereo vision methods. In order to obtain faster con-
vergence and to avoid local minima we employ a hi-
erarchical approach for matching [8, 10], which is in
particular inspired by the work of Redert et al. [15]

Some applications for stereo matching require fast
or even real-time reconstructions, e.g. robot naviga-
tion or real-time view synthesis. The Triclops vision
system [7] consists of a hardware setup with three
cameras and appropriate software for realtime stereo
matching. The system is able to generate depth im-
ages at a rate of about 20Hz for images up to 320x240
pixels on current PC hardware. The software ex-
ploits the particular orientation of the cameras and
MMX/SSE instructions available on current CPUs.
In contrast to the Triclops system our approach can
handle images from cameras with arbitrary relative
orientation.

Yang et al. [19] developed a fast stereo reconstruc-
tion method performed in 3D hardware by utilizing
a plane sweep approach to find correct depth values.
The number of iterations is linear in the requested
resolution of depth values, therefore this method is
limited to rather coarse depth estimation. Further,
their approach requires a true multi-camera setup to
be robust, since the error function is only evaluated
for single pixels. In later work the method was made
more robust using trilinear texture access to accumu-
late error differences within a window [18].

2.2 Accelerated Computations in
Graphics Hardware

Even before programmable graphics hardware was
available, the fixed function pipeline of 3D graphics
processors was utilized to accelerate numerical cal-
culations [5, 6] and even to emulate programmable
shading [13]. The introduction of a quite general
programming model for vertex and pixel process-
ing [9, 14] opened a very active research area. The
primary application for programmable vertex and
fragment processing is the enhancement of photore-
alism in interactive visualization systems (e.g. [2, 4])
and entertainment applications ([11, 12]).

Recently several authors identified current graph-
ics hardware as a kind of auxiliary processing unit
to perform SIMD (single instruction, multiple data)
operations efficiently. Thompson et al. [17] im-
plemented several non-graphical algorithms to run
on programmable graphics hardware and profiled
the execution times against CPU based implementa-
tions. They concluded that an efficient memory inter-
face (especially when transferring data from graphics
memory into main memory) is still an unsolved issue.
For the same reason our implementation is designed
to minimize memory traffic between graphics hard-
ware and main memory. Strzodka [16] discusses the
emulation of higher precision numbers with several
8 bit color channels. We faced a similar problem of
manipulating large integer values and storing them
in the frame buffer and texture maps for later use.

3 Overview of Our Matching
Procedure

The original implementation of our 3D graphics hard-
ware based matching procedure is described in [20].
The matching algorithm essentially warps the left and
the right image onto the current triangular 3D mesh
hypothesis according to the relative orientation be-
tween the images. The projection of the mesh into the
left image constitutes always a regular grid (i.e. the
left image is never distorted). The warped images are
subtracted and the sum of absolute diffenences is cal-
culated in a window around the mesh vertices. New

2



mesh hypotheses are generated by moving mesh ver-
tices along the camera rays for the left image (epipo-
lar constraint). Different mesh hypotheses generate
different local errors and the matching procedure de-
termines the point-wise optimal depth component of
vertices.

The main steps of the algorithm, namely image
warping and differencing, sum of absolute differences
calculation, and finding the optimal depth value are
performed on the graphics processing unit. The main
CPU executes the control flow and updates the cur-
rent mesh hypothesis. In order to minimize transfer
between host and graphics memory most changes ap-
plied to the current mesh geometry are only applied
virtually without requiring real update of 3D vertices.
For details we refer to our earlier work.

The control flow of the matching algorithm consists
of 3 nested loops:

1. The outermost loop adds the hierarchical ap-
proach to our method and reduces the proba-
bility of local minima e.g. imposed by repetitive
structures. In every iteration the mesh and im-
age resolutions are doubled. The refined mesh is
obtained by linear (and optionally median) fil-
tering of the coarser one.

2. The inner loop chooses a set of independent ver-
tices to be modified and updates the depth val-
ues of these vertices after performing the inner-
most loop. In order to avoid influence of depth
changes of neighboring vertices, only one quarter
of the vertices can be modified simultaneously.

3. The innermost loop evaluates depth variations
for candidate vertices selected in the enclosing
loop. The best depth value is determined by re-
peated image warping and error calculation wrt.
the tested depth hypothesis. The body of this
loop runs entirely on the 3D graphics processing
unit (GPU).

Figure 1 illustrates the key steps of the algorithm.
The result of the procedure is a 3D mesh or point
cloud consisting of the sampling points. In the cur-
rent framework we use one sampling vertex every four
pixels, hence images with one megapixel resolution
yield to a mesh with 256× 256 vertices.

4 Amortized Difference Image
Generation

For larger image resolutions (e.g. 1024 × 1024) ren-
dering of the corresponding mesh generated by the
sampling points takes a considerable amount of time.
In the 1-megapixel case the mesh consists of approxi-
mately 131 000 triangles, which must be rendered for
every depth value (several hundred times in total).
Especially on mobile graphic boards mesh processing
implies a severe performance penalty: stereo match-
ing of two 256×256 images has comparable speed on
a desktop GPU and on a usually slower mobile GPU
intended for laptop PCs, but matching 1-megapixel
images requires two times longer on the mobile GPU.

In order to reduce the number of mesh drawings
up to four depth values are evaluated in one pass.
We use multitexturing facilities to generate four tex-
ture coordinates for different depth values within the
vertex program. The fragment shader calculates the
absolute differences for these deformations simultane-
ously and stores the results in the four color channels
(red, green, blue and alpha). Note that the mesh
hypothesis is updated infrequently and the actually
evaluated mesh is generated within the vertex shader
by deforming the incoming vertices according to the
current displacement.

The vertex program has now more work to per-
form, since four transformations (matrix-vector mul-
tiplications) are executed to generate texture coordi-
nates for the right image for each vertex. Neverthe-
less, the obtained timing results (see Section 8) in-
dicate a significant performance improvement by uti-
lizing this approach. Several operations are executed
only once for up to 4 mesh hypotheses: transferring
vertices and transforming them into window coordi-
nates, triangle rasterization setup and texture access
to the left image.

5 Chunked Image Transforms

In contrast to Yang and Pollefeys [18] we calculate
the error within a window explicitly using multiple
passes. In every pass four adjacent pixels are ac-
cumulated and the result is written to a temporary

3



Minimum calculation

and optimal depth
New minimal error

Update mesh hypothesis

Old minimal error

Absolute difference

differences

Sum of abs.

Left image

Range image

Right image

Figure 1: The basic workflow of the matching procedure. For the current mesh hypothesis a difference image
between left image and warped right image is calculated in hardware. The error in the local neighborhood
of the modified vertices are accumulated and compared with the previous minimal error value. The result of
these calculations are minimal error values (stored in the red, green and blue channel) and the index of the
best modification of vertices so far (stored in the alpha channel). All these steps are executed in graphics
hardware and do not require transfer of large datasets between main memory and video memory.

off-screen frame buffer (usually called pixel buffer or
P-buffer for short). It is possible to set pixel buffers
as destination for rendering operations (write access)
or to bind a pixel buffer as a texture (read access),
but a combined read and write access is not available.
In the default setting the window size is 8× 8, there-
fore 3 passes are required. Note that we use specific
encoding of summed values to avoid overflow due to
the limited accuracy of one color channel. We refer
to [20] for details.

Executing this multipass pipeline to obtain the
sum of absolute differences within a window requires

several P-buffer activations to select the correct tar-
get buffer for writing. These switches turned out to
be relatively expensive (about 0.15ms per switch). In
combination with the large number of switches the to-
tal time spent within these operations comprise a sig-
nificant fraction of the overall matching time (about
50% for 256×256 images). If the number of these op-
erations can be optimized, one can expect substantial
increase in performance of the matching procedure.

Instead of directly executing the pipeline in the in-
nermost loop (requiring 5 P-buffer switches) we reor-
ganize the loops to accumulate several intermediate

4



Difference
image 1

Difference
image 2

Difference
image 4

Difference
image 3

n x n

n/2 x n/2

pixel summation
for every iteration

pixel summation
every four iterations

pixel summation
once per block

n x n

n x n

Figure 2: The modified pipeline to minimize P-buffer
switches. Several temporary results are accumulated
in larger pixel buffers arranged like tiles. Later passes
operate on all those intermediate results and are
therefore executed less frequently.

results in one larger buffer with temporary results
arranged in tiles (see Figure 2). Therefore P-buffer
switches are amortized over several iterations of the
innermost loop. This flexibility in the control flow
is completely transparent and needs not to be coded
explicitly within the software. Those stages in the
pipeline waiting for the input buffer to become ready
are skipped automatically.

6 Minimum Determination Us-
ing the Depth Test

In our original implementation we utilized a fragment
program to update the minimal error and optimal
depth value found so far. This approach works on mo-
bile graphic cards, but it is rather slow due to neces-
sary P-buffer activations (since the minimum compu-
tation cannot be done in-place). Z-buffer tests allow
conditional updates of the frame buffer in-place, but

only very current graphics cards support user-defined
assignment of z-values within the fragment shader
(e.g. by using the ARB_FRAGMENT_PROGRAM OpenGL
extension). Older hardware always interpolates z-
values from the given geometry (vertices).

We use the rather simple fragment program shown
in Figure 3 to obtain one scalar error value from the
color coded error and move this value to the depth
register used by graphics hardware to test the in-
coming depth against the z-buffer. Using the depth
test provided by 3D graphics hardware, the given in-
dex of the currently evaluated depth variation and
the corresponding sum of absolute differences is writ-
ten into the destination buffer, if the incoming error
is smaller than the minimum already stored in the
buffer. Therefore a point-wise optimum for evalu-
ated depth values for mesh vertices can be computed
easily and efficiently.

PARAM depth_index = program.env[0];

PARAM coeffs = { 1/256, 1/16, 1, 0 };

TEMP error, col;

TEX col, fragment.texcoord[0],

texture[0], 2D;

DP3 error, coeffs, col;

MOV result.color, depth_index;

MOV result.depth, error;

Figure 3: Fragment program to transfer the incom-
ing, color coded error value to the depth component
of the fragment. The dot product (DP3) between the
texture element and the coefficient vector restores the
scalar error value encoded in the color channels.

7 Disparity Estimation

A rather straightforward extension of our epipolar
matching procedure is disparity estimation for two
uncalibatrated images without known relative orien-
tation. In order to address this setting the 3D mesh
hypothesis (i.e. a 2D to 1D (depth) mapping) is re-
placed by a 2D to 2D (texture coordinates) mapping,
but the basic algorithm remains the same. Instead
of an 1D search along the epipolar line the procedure

5



Disparity map

Figure 4: 2D search for the appropriate disparity
value to warp the right image. The arrows indicate
search directions at the sampling point.

performs a 2D search for appropriate disparity val-
ues. In this setting the rather complex vertex shader
to generate texture coordinates for the right image
used for epipolar matching can be omitted. In every
iteration the current 2D disparity map hypothesis is
modified in vertical and horizontal direction and eval-
uated (Figure 4). With this approach it is possible
to find corresponding regions in typical small base-
line settings (i.e. only small change in position and
rotation between the two images).

8 Results

We run timing experiments on a desktop PC with an
Athlon XP 2700 and an ATI Radeon 9700 and on
a laptop PC with a mobile Athlon XP 2200 and an
ATI Radeon 9000 Mobility. Table 1 depicts timing
results for those two hardware setups and illustrates
the effect of the various optimizations mentioned in
the previous sections. The timings were obtained
for epipolar stereo matching of the dataset shown
in Figure 5. The total number of evaluated mesh
hypothesis is 224 (256x256), 280 (512x512) and 336
(1024x1024). In the highest resolution (1024x1024)
each vertex is actually tested with 84 depth values
out of a range of approximately 600 possible values.
Because of limitations in graphics hardware we are
currently restricted to images with power of two di-
mensions.

We compared the original unoptimized implemen-

tation with the methods incorporating only one of the
enhancements described in Section 4 and Section 5
and with the fasted method using all enhancements
(including the technique described in Section 6 on the
desktop PC). The desktop PC is surprisingly slow
for lower resolutions, but the faster vertex process-
ing and increased fill rate is obvious for the highest
tested resolution. Although the benchmark results
are given only for the particular dataset, timings for
other datasets are similar (but not always completely
identical).

Figure 5 gives visual results for stereo images show-
ing the Merton college. Figure 5(a) and (b) comprise
the source images, and Figure 5(c) shows the depth
image generated by the epipolar matching procedure,
whereas Figure 5(d) displays the magnitude of dis-
parity between the source images. Brighter regions
indicate larger disparities. Finally, Figure 5(e) shows
a screenshot of the 3D point cloud obtained by the
matching procedure.

9 Conclusions and Future
Work

We presented several significant performance en-
hancements of our 3D hardware based stereo match-
ing procedure to obtain faster reconstructions with-
out loss in accuracy compared to the original ap-
proach. Further, we illustrated graphics hard-
ware based disparity estimation descending from the
epipolar stereo matcher.

With the emergence of consumer level DirectX 9
graphic boards supporting floating point precision for
color channels and rather orthogonal and powerful
instruction sets, more advanced hardware based al-
gorithms to obtain 3D models from multiple images
can be implemented. We intend to utilize an adaptive
mesh refinement approach instead of the pure regular
grid to generate suitable 3D models in regions with
little texture information. Alternatively we have ini-
tial support for a smoothing term incorporated into
the error value to favor planar reconstructions in ho-
mogeneous regions. Especially for disparity matching
it is an objective to obtain disparity vectors for every

6



Hardware Method 256x256 512x512 1024x1024
Desktop

Original 0.315 0.57 1.34
Amortized 0.227 0.358 0.747
Chunked 0.249 0.496 1.28
Fastest 0.106 0.198 0.501

Laptop
Original 0.295 0.816 2.75
Amortized 0.169 0.37 1.10
Chunked 0.235 0.75 2.66
Fastest 0.095 0.31 1.05

Table 1: Timing results (in seconds) for the apartment building dataset on two different graphic cards. The
original implementation is compared with methods incorporating the improvements described in Section 4–6.
We show the influence of individual optimizations (amortized mesh rendering and chunked image transforms)
as well.

single pixel (instead for every sampling vertex). This
goal requires a very different approach to be feasible
for graphics hardware.

10 Acknowledgements

We would like to thank Horst Bischof for careful read-
ing of the manuscript and helpful suggestions.

This work has been done in the VRVis research cen-
ter, Graz and Vienna/Austria (http://www.vrvis.at),
which is partly funded by the Austrian government
research program Kplus.

References

[1] M. Z. Brown, D. Burschka, and G. D. Hager.
Advances in computational stereo. IEEE Trans-
actions on Pattern Analysis and Machine Intel-
ligence, 25(8):993–1008, 2003.

[2] K. Engel, M. Kraus, and T. Ertl. High-
quality pre-integrated volume rendering using
hardware-accelerated pixel shading. In Euro-
graphics / SIGGRAPH Workshop on Graphics
Hardware ’01, pages 9–16, 2001.

[3] O. Faugeras, J. Malik, and K. Ikeuchi, editors.
Special Issue on Stereo and Multi-Baseline Vi-

sion. International Journal of Computer Vision,
2002.

[4] M. Hadwiger, T. Theußl, H. Hauser, and M. E.
Gröller. Hardware-accelerated high-quality fil-
tering on PC hardware. In Proc. of Vision,
Modeling and Visualization 2001, pages 105–
112, 2001.

[5] M. Hopf and T. Ertl. Accelerating 3d convolu-
tion using graphics hardware. In Visualization
1999, pages 471–474, 1999.

[6] M. Hopf and T. Ertl. Hardware-based wavelet
transformations. In Workshop of Vision, Mod-
elling, and Visualization (VMV ’99), pages 317–
328, 1999.

[7] Point Grey Research Inc.
http://www.ptgrey.com.

[8] H. S. Lim and T. O. Binford. Structural corre-
spondence in stereo vision. In Proc. Image Un-
terstanding Workshop, volume 2, pages 794–808,
1988.

[9] E. Lindholm, M. J. Kilgard, and H. Moreton. A
user-programmable vertex engine. In Proceed-
ings of SIGGRAPH 2001, pages 149–158, 2001.

7



(a) Left image (b) Right image (c) The depth image

(d) The disparity image (e) The reconstructed model as 3D point cloud

Figure 5: Visual results for the Merton college dataset. The source images have a resolution of 1024× 1024
pixels.

[10] C. Menard and M. Brändle. Hierarchical area-
based stereo algorithm for 3D acquisition. In
Proceedings International Workshop on Stereo-
scopic and Three Dimensional Imaging, pages
195–201, 1995.

[11] J. L. Mitchell. Hardware shading on the Radeon
9700. ATI Technologies, 2002.

[12] NVidia Corporation. Developer relations.
http://developer.nvidia.com.

[13] M. S. Peercy, M. Olano, J. Airey, and P. J. Un-
gar. Interactive multi-pass programmable shad-
ing. In Proceedings of SIGGRAPH 2000, pages
425–432, 2000.

[14] K. Proudfoot, W. Mark, S. Tzvetkov, and
P. Hanrahan. A real-time procedural shading
system for programmable graphics hardware. In
Proceedings of SIGGRAPH 2001, pages 159–
170, 2001.

8



[15] A. Redert, E. Hendriks, and J. Biemond. Cor-
respondence estimation in image pairs. IEEE
Signal Processing Magazine, pages 29–46, 1999.

[16] R. Strzodka. Virtual 16 bit precise operations on
RGBA8 textures. In Proc. of Vision, Modeling
and Visualization 2002, pages 171–178, 2002.

[17] C. J. Thompson, S. Hahn, and M. Oskin. Us-
ing modern graphics architectures for general-
purpose computing: A framework and analy-
sis. In 35th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-35),
2002.

[18] R. Yang and M. Pollefeys. Multi-resolution real-
time stereo on commodity graphics hardware.
In Conference on Computer Vision and Pattern
Recognition, 2003.

[19] R. Yang, G. Welch, and G. Bishop. Real-time
consensus based scene reconstruction using com-
modity graphics hardware. In Proceedings of Pa-
cific Graphics, 2002.

[20] C. Zach, A. Klaus, M. Hadwiger, and K. Karner.
Accurate dense stereo reconstruction using
graphics hardware. In EUROGRAPHICS 2003,
Short Presentations, 2003. available as report
from www.vrvis.at.

9


