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Abstract

Current graphics hardware offers only very limited support for con-
volution operations, which is primarily intended for image process-
ing. The input and output sample grids have to coincide, making
it impossible to use these features for more general filtering tasks
such as image or texture resampling. Furthermore, most hardware
employs linear interpolation for texture reconstruction purposes, in-
curring noticeable artifacts. Higher-order interpolation via general
convolution is able to remove most of these artifacts. However,
real-time applications currently do not consider higher-order filter-
ing due to lack of hardware support. We present algorithms for
extremely fast convolution on graphics hardware, which are able to
deploy high-resolution filters, i.e., filters that are sampled at a much
higher resolution than the width of the filter kernel. This framework
can be used for general convolution tasks, but is especially suited to
substituting the native bi-linear or tri-linear interpolation currently
used for texture magnification, while still achieving frame rates of
up to 100 frames per second for full screen filtering with bi-cubic
interpolation.

1 Introduction

Convolution is the fundamental operation of linear filtering, where
a filter kernel is passed over the input data, and for each desired out-
put sample a weighted average of input samples that are covered by
the filter kernel is computed. This process can be used for various
tasks, ranging from image or volume processing to filtering for re-
sampling purposes. Unfortunately, current hardware supports only
convolutions where the input and output sample grids coincide. In
such a scenario, a convolution kernel consists of a relatively small
number of weights located at integer locations, where for each out-
put sample being calculated each of these weights corresponds to
exactly one input sample. Naturally, such convolution filters cannot
be used when the output sample grid has no restrictions with respect
to location or size, i.e., in general image or texture resampling. In
this case, high-resolution filters are needed, i.e., filters that have not
only been sampled at integer locations, but at a much higher resolu-
tion than the width of the filter kernel. They are a high-resolution,
albeit still discrete, representation of the original continuous filter
kernel. For all theoretical purposes, however, we consider such a
kernel as actually being continuous; in practice, we also employ
reconstruction for the filter kernel itself.

Especially in texture mapping, the input data in principle has to
be subjected to two filtering operations in order to resample the dis-
crete texture space onto the likewise discrete screen space. First,
the texture has to be reconstructed from the samples stored in the
texture map using a reconstruction filter. After it has subsequently
been warped to screen space according to the viewing projection, a
prefilter has to be applied, before finally sampling onto the output
pixel grid [4]. Naturally, in practice certain trade-offs have to be
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made for performance reasons. Where in theory the filtering pro-
cess is the same for both magnification and minification, i.e., where
a single texel covers many pixels or vice versa, these cases are usu-
ally distinguished and handled separately. In the case of magnifi-
cation the ideal resampling filter is dominated by the reconstruc-
tion filter, whereas in the case of minification it is dominated by the
warped prefilter. Current graphics hardware tackles this problem by
using a combination of MIP mapping [25], and bi-linear or tri-linear
interpolation. The former is used to approximate the prefilter and
provide the input to the second stage, i.e., the reconstruction filter
that performs linear interpolation in texture space. While most pre-
vious work has focused on improving the prefiltering stage [3, 10],
the framework presented in this paper can be used to significantly
improve the reconstruction stage. In fact, although we are focus-
ing on magnification, it is possible to combine our algorithms with
MIP mapping in order to handle the case of minification, and attain
a combination of prefiltering and reconstruction.

The main contribution of this paper is two-fold. First, we present
a general framework for very fast convolution with basically ar-
bitrary high-resolution filter kernels in graphics hardware, whose
applicability will increase even further with near-future hardware
supporting higher frame buffer precision and range, and more si-
multaneous textures. The hardware itself is not required to support
convolution operations natively at all. We present several convo-
lution algorithms, which differ with respect to speed and quality
trade-offs, the types of filter kernels they can handle, and whether
or not they require the input texture to be pre-processed. We make
use of state-of-the-art hardware features such as multi-texturing,
pixel shaders, and vertex shaders. These capabilities are currently
rapidly increasing in both power and flexibility due to the demand
of real-time shading languages [18, 20], and will soon allow us to
perform cubic texture filtering in a single rendering pass. The pre-
sented framework can be used to add arbitrary programmable filter
kernels to any real-time renderer or shading language, especially
for texture reconstruction. Second, we establish an already feasible
high-quality substitute for the current de-facto standard of linear in-
terpolation for hardware texture reconstruction, in the form of con-
volution with cubic high-resolution filter kernels. This approach is
in line with the increased willingness and trend toward spending fill
rate on rendering with higher quality [5]. We show that our frame-
work is already able to perform bi-cubic texture filtering at up to
100 frames per second for full screen rendering.

Related work. Current graphics hardware has only very lim-
ited support for convolution. The OpenGL imaging subset [11] that
has been introduced with OpenGL 1.2 can be used for image pro-
cessing tasks, using 1D and 2D convolutions where the output and
input sample grids coincide, and filter kernels are sampled at in-
teger locations only. Building upon the imaging subset, Hopf and
Ertl [6] have shown how to perform 3D convolutions for volume
processing. Recent graphics hardware features like vertex and pixel
shaders can be used for substituting the imaging subset with a faster
approach [7], although this is more prone to precision artifacts. The
framework we present in this paper can easily be combined with
optional real-time image-processing filters. For these, we combine



the standard approach [7] with hierarchical summation in order to
reduce precision artifacts. The filter convolution sum is evaluated
in reverse order than the one usually used in software-based convo-
lution, which is also done by all splatting-based volume rendering
techniques [24]. We build upon our earlier work on evaluating a
high-resolution filter convolution sum in hardware [1]. However,
we now propose a general framework realized with an entirely new
implementation that is able to exploit more properties of the filter
kernel, offers greater flexibility, leverages vertex and pixel shaders,
and attains frame rates that are approximately ten times higher. In-
stead of being restricted to slice reconstruction, the algorithms we
present can be used for texture mapping arbitrary polygonal ob-
jects in perspective, filtering static and animated textures, both pre-
rendered and procedural, as well as both surface [2], and solid tex-
tures [17, 19]. The approach we present can be combined with
MIP mapping [25], which is crucial to using it as full substitute
for the usual linear interpolation. The two major factors contribut-
ing to the huge speed-up of the framework presented in this paper
in comparison to our earlier results [1] are the exploitation of fil-
ter separability, and extensive use of pixel and vertex shaders. The
combination of drastically improved performance and more flexi-
bility and features now allows to consider using high-quality tex-
ture filtering in practice, where only linear interpolation has been
used before.

High quality prefiltering techniques have been developed for
both software [3], and hardware [10] renderers. Hardware pre-
filtering usually focuses on extending MIP mapping for anisotropic
filtering in the case of minification, via footprint assembly [10],
where several texture lookups at locations approximating the pixel
footprint in texture space are combined. Although most of these
methods require explicit hardware support, standard MIP mapping
hardware can also be used for anisotropic filtering by accessing
several MIP map levels, and compositing these samples via multi-
texturing or multiple rendering passes [14]. Our method also per-
forms filtering by compositing several weighted samples. However,
we are focusing on reconstruction for texture magnification instead
of minification and handling anisotropy, and retrieve weights from
a high-resolution filter kernel for each pixel.

Currently, interest in higher quality filtering of textures is resurg-
ing, especially in the field of point-based rendering [27]. Over the
years, a lot of work in computer graphics has also been devoted to
investigating high-quality reconstruction via convolution, although
almost exclusively with software implementations. Keys [8] de-
rived a family of cardinal splines for reconstruction and showed that
among these the Catmull-Rom spline is numerically most accurate.
Mitchell and Netravali [12] derived another family of cubic splines
quite popular in computer graphics, the BC-splines. Marschner
and Lobb [9] compared linear interpolation, cubic splines, and win-
dowed sinc filters. They concluded that linear interpolation is the
cheapest option and will likely remain the method of choice for time
critical applications. Moller et al. provide a general framework for
analyzing filters in the spatial domain, using it to analyze the cardi-
nal splines, and the BC-splines [13]. They also show how to design
accurate and smooth reconstruction filters. Theufl et al. [22] used
the framework developed by Moller et al. to assess the quality of
windowed reconstruction filters and to derive optimal values for the
parameters of Kaiser and Gaussian windows.

2 High-res convolution in hardware

This section presents our framework for high-resolution convolu-
tion in graphics hardware. We begin the discussion by briefly sum-
marizing key points of our method, before we describe the basic
principle in section 2.1, and illustrate the algorithms constituting
our framework in section 2.2. Section 2.3 covers issues related to
range restrictions of current graphics hardware.

Our method achieves high-quality texture filtering by performing
a convolution of an input texture with a “continuous” filter kernel,
which in reality is stored in several texture maps of user-specified
size. The filter kernel is sampled and stored into these textures in
a pre-process. Each of the individual parts of the filter kernel that
is stored in a separate texture map is called a filter tile, and the cor-
responding textures are referred to as tile textures. Since the filter
representation is of relatively high resolution, i.e., contains a much
higher number of samples than the width of the kernel, we call this
representation a tiled high-resolution filter. The exact number of
textures depends on properties of the filter and the algorithm used,
but in the case of cubic filters it ranges from two to 64. At run time,
arbitrary 1D, 2D, or 3D input textures can be convolved with the
sampled filter kernel. In order to do so, the filter convolution sum is
evaluated entirely in hardware, by exploiting multi-texturing, ver-
tex shaders, pixel shaders, and multiple rendering passes. Basically,
in each pass the input texture is point-sampled and multiplied with
a single tile texture, which is replicated and scaled in such a way
that an entire tile corresponds to a single texel of the input tex-
ture. Adding up the results of these multiplications performed in
the corresponding passes yields the final result, which is equivalent
to evaluating the filter convolution sum (equation 1).

An important property of the framework presented in this paper
is that pre-processing of the input data to be filtered is not required
for all but one variant of the presented approaches. However, we
also propose algorithms operating on monochrome input data pre-
interleaved into RGBA data, which can be faster than using unpro-
cessed input data.

The filter convolution sum. Since we want to be able to deal
with the completely general case of discrete convolution of an input
texture with an arbitrary high-resolution filter kernel, we have to
evaluate the well-known filter convolution sum [15], where f[7] is
the discrete input texture, h(x) is the “continuous” (i.e., in practice
still discrete, but sampled with high resolution) filter kernel, and m
is half the filter width, which we show here for the one-dimensional
case:
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Note that, although not used in practice, we are able to deal with
filter kernels of odd width, by simply extending them to the next
even extent with zeros. The following two sections will show how
the filter convolution sum can be evaluated in hardware extremely
quickly.

2.1 Basics of high-res hardware convolution

This section illustrates the basic principle of evaluating equation 1
entirely in graphics hardware, by substituting h(z) with a sam-
pled high-resolution representation that is stored in several texture
maps, and exploiting multi-texturing and multiple rendering passes
for the actual computation. In this discussion, we are using an
implementation-centric point of view, and review the basic idea
only briefly. A more detailed discussion of the basic idea can be
found in [1].

Filter kernel representation. The major property of high-
resolution convolution is that any given continuous filter kernel is
sampled at a user-specified resolution that is much higher than the
width of the filter kernel. After sampling, we store the filter ker-
nel in multiple texture maps, which we call tile textures. Specif-
ically, each filter kernel subset of unit extent is sampled with the
same resolution, and becomes exactly one texture map. That is, the
sampled filter kernel is split up into filter tiles at integer locations,
before it is converted to a collection of texture maps. In the case
of a cubic kernel — which has width four — the kernel is therefore
comprised of four individual 1D texture maps, i.e., for the ranges
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Figure 1: Left: filtering a 64x64 texture mapped several times onto a geometric object; although filtering and resampling is conceptually done
in texture space, the algorithm resamples only at the locations actually corresponding to screen pixels, i.e., could be said to operate in image
space; (a) bi-linear interpolation, (b) bi-cubic B-spline, (c) Catmull-Rom spline, (d) Kaiser-windowed sinc. Right: Procedural fire texture

animation; (e) bi-linear interpolation, (f) bi-cubic B-spline.

[-2,-1),[-1,0),[0,1), and [1, 2). Kernels of higher dimension-
ality than one are handled depending on whether they are separable
or not. If a kernel is separable, lower-dimensional (usually 1D)
components are stored, and multiplied on-the-fly at run time, pre-
serving both texture memory, and texture fetch bandwidth. If it
is not separable, it has to be sampled into several texture maps of
according dimensionality, i.e., non-separable kernels are required
to reside in either 2D or 3D texture maps. Thus, in the case of
a bi-cubic kernel, sixteen 2D texture maps are needed, whereas a
tri-cubic kernel requires 64 3D textures. However, if a filter ker-
nel is symmetric, this property can also be exploited in order to
reduce the number of kernel textures required. E.g., a symmetric
bi-cubic kernel can be stored in three instead of sixteen textures,
and a symmetric tri-cubic kernel can be stored in four instead of
64 textures. Fortunately, many important filter kernels — especially
many filters used for function reconstruction — are both separable
and symmetric. Thus, it is possible to attain both bi-cubic and tri-
cubic reconstruction with only two 1D textures for storing the filter
kernel itself. A sampling resolution of 64 or 128 samples per filter
tile and dimension usually suffices.

Evaluation of the convolution sum. At run time, the filter con-
volution sum is evaluated over multiple rendering passes, in each
pass simultaneously point-sampling the input texture, generating

(@ FOR ALL output samples z; DO
FOR ALL contributing relative input locations r; DO
g(z:i) += fltrunc(z;) + r;] = h(frac(z;) — rj);

(b) FOR ALL contributing relative input locations r; DO
PAR ALL output samples z; DO
g(w;) += Shiftj (H[trunc(z;)] * h; (frac(z;));

Table 1: Evaluating Eq. 1 in the usual order (a), versus the one
we are using (b). Each iteration of the outer loop in (b) basically
corresponds to a single rendering pass; r; € [—[m] + 1, [m]].
PAR denotes a parallel FOR loop.

the needed filter weights, and multiplying the corresponding input
data and weights. The number of rendering passes depends on the
width of the filter kernel, the convolution algorithm employed (sec-
tion 2.2), and the maximum number of texture units supported by
the hardware. It may be as low as a single pass. Generation of fil-
ter weights ranges from simply sampling one of the tile textures, to
compositing two or three values or vectors, retrieved from different
filter tiles, in the pixel shader. Basically, both the input texture and
from one to three tile textures need to be mapped to the output sam-
ple grid in screen space multiple times. This mapping is the same
for the input texture and the filter tiles apart from scale, where an
entire filter tile is mapped to a single input texel. Also, tile textures
are automatically repeated, so that the same filter tile maps to every
input texel. Perspective correction is not only used for input tex-
tures, but also for tile textures. Thus, all approaches presented in
this paper are independent from the type of projection used. They
work equally well for both orthogonal and perspective projections.

This basic principle amounts to evaluating the convolution sum
in a different order than the one usually employed, i.e., in software
convolution. Instead of calculating each output sample at a point
x in its entirety, we instead distribute the contribution of a single
relative input sample to all relevant output samples simultaneously.
That is, equation 1 would usually be evaluated with code roughly
equivalent to what is shown in table 1(a): looping over all output
locations z; one after the other, the corresponding output sample
g(x:) is generated by adding up the contributions of the 2m con-
tributing neighbor samples, whose locations are specified relative
(r;) to the output sample location. Instead of this, using high-
resolution filter tiles and multiplying input samples by filter weights
in the pixel shader amounts to what is shown in table 1(b): looping
over all relative input sample locations contributing to each respec-
tive output sample location, a single rendering pass adds the cor-
responding contribution of each relative input sample to all output
samples simultaneously. The shift operator shift; denotes that the
input texture is not actually indexed differently at each output sam-
ple location, but instead the entire input texture is shifted according
to the current rendering pass, in order to retrieve a single relative
input sample location for all output samples simultaneously. Sim-



ilarly, h; denotes the filter tile corresponding to the current pass,
instead of the entire filter kernel h.

2.2 Convolution algorithms

This section presents the actual algorithms for performing convo-
lution with high-resolution filters in hardware. Each of the basic
algorithms can be expanded to make use of more available texture
units (and thus fewer passes), by simply adding the results of multi-
ple basic blocks together in a single pass. Combining multiple logi-
cal rendering passes also helps to exploit higher internal calculation
precision in order to reduce quantization artifacts. We illustrate the
differences with pseudo code fragments showing the global setup
(for all passes), setup that changes per pass, and the vertex and
pixel shaders executed in each pass. For the actual implementa-
tions of the latter two, we use either the NV_vertex_program
and NV_register.combiners (NVIDIA GeForce 3), or
the EXT_vertex_shader and ATI_fragment_shader (ATI
Radeon 8500) OpenGL extensions.

General filter kernels. In the general case, we assume that the
filter kernel is used and stored in its entirety, i.e., potential separa-
bility or symmetry is not exploited. This implies that all tile tex-
tures have the dimensionality of the convolution itself (1D, 2D, or
3D). Naturally, this case has the highest demands on texture mem-
ory and texture fetch rate. Table 2 shows the pseudo code for the
resulting algorithm, which we call std-2x. “std” meaning the stan-
dard algorithm (not separated, non-interleaved), and “2x” denoting
the number of textures used in a single pass (in this case two). Sev-
eral of these building blocks can be combined in a single rendering
pass, depending on the number of texture units supported by the
hardware, thus yielding the analogous extended algorithms std-4x,
std-6x, and so on. The basic algorithm works identically for 1D, 2D,
and 3D convolutions, respectively, apart from minor details such as
the number of texture coordinates that need to be configured.

global setup:
input texture: as-is, all formats (mono, RGB, RGBA, €tc.);
filter tiles: 1D, or not-separated 2D or 3D;
per-pass setup:
filter tiles: select tile corresponding to pass;
if kernel symmetric: setup tile mirroring;
vertex shader:
texcoord[ UNITO ].s{t{r}} = shift_j( texcoord[ UNITO]);
texcoord[ UNIT1 ].s{t{r}} = texcoord[ UNITO ] * tile_size;
pixel shader:
reg0 = SampleTex( UNITO );
regl = SampleTex( UNIT1);
out = Multiply( reg0, regl);

Table 2: Convolution with std-2x algorithm.

Symmetricfilter kernels. Exploiting filter kernel symmetry can
easily be done be reusing tiles with mirrored texture coordinates.
Symmetry can be exploited both along axes and diagonals. Espe-
cially when the filter is not separable, it is important to exploit sym-
metry, in order to reduce texture memory consumption, which is
especially high in the case of 3D convolutions. It is also important
to note here that mirroring filter tiles is not necessarily as simple as
swapping texture coordinates. The reason for this is that the mirror-
ing is required to be pixel-exact. That is, if a specific pixel in screen
space was covered by a specific weight in a filter tile in one pass, it
must be covered by the exactly corresponding weight in the respec-
tive mirrored tile in another pass. While it might simply suffice to
mirror texture coordinates by, e.g., negation in the vertex shader, on
some hardware architectures it may be necessary to actually mir-

ror tiles in the pixel shader. Although texture coordinate iteration
can be exact enough for coordinates to be mirrored only at the ver-
tices and still achieve consistent results in different passes, the only
way to guarantee pixel-exactness is mirroring on a per-pixel basis.
The algorithm outlined in table 2 contains an “if kernel symmet-
ric” clause, which denotes where tile mirroring needs to be setup in
order to exploit symmetric filter kernels.

Separable filter kernels. When the filter kernel is separable,
the texture memory and texture fetch rate requirements can be re-
duced tremendously. Instead of using actual 2D or 3D tile textures
for 2D or 3D convolutions, the higher-dimensional weights can be
generated on-the-fly from either two or three one-dimensional tile
textures in the pixel shader. This is easily possible by performing
separable composition, i.e., multiplying corresponding weights re-
trieved from two — not necessarily different — lower-dimensional
tiles. Alternatively, for 3D convolutions the needed filter weights
can also be generated from one 1D texture and one 2D texture, e.g.,
in order to lower the number of texture units required. Table 3
shows the corresponding algorithms. The sep-3x algorithm can be
used for 2D or 3D convolution. In the former, two-dimensional
filter tiles are substituted by two one-dimensional tiles. In the
latter, one 1D tile and one 2D tile are used instead of a single
three-dimensional tile. Although in theory there would not be
any difference between exploiting separability by generating filter
weights on-the-fly, and not utilizing it by simply performing sepa-
rable composition beforehand when building tile textures, in prac-
tice the results are slightly different. The reason for this is that in
a pre-process the necessary multiplications can be carried out in
floating-point precision, whereas in the pixel shader they have to
be done at whatever precision the hardware offers there. Although
rarely noticeable, exploiting separability or not is definitely a qual-
ity/performance trade-off. While we have also used numerical sim-
ulations for estimating the numerical difference, the best way to
prefer one algorithm over the other is by visual comparison.

global setup:
input texture: as-is, all formats (mono, RGB, RGBA, €tc.);
filter tiles: separable; only 1D (3x/4x), or 1D plus 2D (3x);
per-pass setup:
filter tiles: select tiles corresponding to pass;
if kernel symmetric: setup tiles mirroring;
vertex shader:
texcoord[ UNITO ].s{t{r}} = shift_j( texcoord[ UNITO]);
texcoord[ UNIT1 ].s{t} = texcoord[ UNITO ] * tile_size;
texcoord[ UNIT2 ].s = texcoord[ UNITO ] * tile_size;
texcoord[ UNIT3 ].s = texcoord[ UNITO ] * tile_size; // sep-4x
pixel shader:
reg0 = SampleTex( UNITO );
regl = SampleTex( UNIT1);
reg2 = SampleTex( UNIT2);
reg3 = SampleTex( UNIT3); // sep-4x
reg2 = Multiply( reg2, reg3 ); // sep-4x
regl = Multiply( regl, reg2 );
out = Multiply( reg0, regl );

Table 3: Convolution with sep-3x and sep-4x algorithms; only the
latter contains the statements marked with // sep-4x.

Separable and symmetric filter kernels. The best possible
combination of kernel properties is when a filter is both separable
and symmetric, which fortunately many interesting filter kernels
are — especially many of those one would like to use for function
reconstruction purposes. The pseudo code in table 3 contains an “if
kernel symmetric” clause, which denotes where kernel symmetry
needs to be taken into account. Apart from this, the algorithm is



Figure 2: Four frames of a 2D particle animation from the space combat game Parsec [16], employing high-resolution convolution for high
quality reconstruction; middle row: bi-linear interpolation; bottom row: bi-cubic B-spline.

identical to the separable-only case.

Pre-interleaved monochrome input. If the input data is single-
valued and a certain limited amount of pre-processing is considered
feasible, all of the algorithms outlined above can be combined with
the following scheme that exploits the capability of graphics hard-
ware to perform per-pixel dot products. The idea is to fold four
passes into a single pass, by evaluating four terms of the convolu-
tion sum in a single operation. In order to do so, four input values
have to be available simultaneously, which can be achieved by con-
verting a monochrome input texture into an RGBA texture by inter-
leaving it four times with itself, each time using a different texel off-
set. That is, at each position in the texture the value of three neigh-
boring texels is available in addition to the original texel itself. If the
tile textures are also interleaved accordingly, thus achieving correct
correspondences of relative input samples and filter weights in all
four channels, four terms of the convolution sum can then be eval-
uated concurrently by using a four-component dot product instead
of a component-wise multiplication in the pixel shader. The dot-2x
pseudo code in table 4 illustrates this as an extension of the std-2x
algorithm of table 2. Although not shown here for brevity, the same
approach can also be combined trivially with the separable algo-
rithms outlined in table 3, thus yielding the spd-3x, spd-4x, spd-6x,
etc. algorithms. Exploiting both separability and pre-interleaved in-
put data is generally the fastest approach offered by our framework
(see table 5). Note that the interleaved source texture is of exactly
four times the size of the corresponding monochrome texture. Or,
comparing with the size of an RGBA input, the size stays the same,
but color information is lost.

Combination with MIP mapping. All of the algorithms pre-
sented up to now can be extended to cooperate with MIP mapping.
The basic problem is that the actual resolution of the texture map

has to be known in texels for two inherent parts of our framework.
First, the input texture has to be shifted by one-texel offsets in or-
der to distribute the corresponding input values to the convolution
sum. Second, the tile textures have to be scaled in such a way that
a single tile matches up with a single texel of the input texture.
Theoretically, it would be possible to alleviate the latter problem
by storing filter tiles repeatedly in the corresponding textures and
building a MIP map pyramid for them, instead of letting the hard-
ware automatically repeat tiles. However, this is entirely infeasible
due to the texture resolutions that would be required. While both of
these steps can be done in the vertex shader if the texture resolution
is known, this is not possible anymore in the presence of MIP map-
ping, where the actual resolution of the input texture may vary from

global setup:
input texture: monochrome, but interleaved in RGBA,
filter tiles: 1D, 2D, or 3D; analogously interleaved in RGBA,;
per-pass setup:
filter tiles: select tile corresponding to pass;
if kernel symmetric: setup tilesmirroring;
vertex shader:
texcoord[ UNITO ].s{t{r}} = shift_j( texcoord[ UNITO]);
texcoord[ UNIT1 ].s{t{r}} = texcoord[ UNITO ] * tile_size;
pixel shader:
reg0 = SampleTex( UNITO );
regl = SampleTex( UNIT1);
out = DotProduct4( reg0, regl);

Table 4: Convolution with dot-2x algorithm.



pixel to pixel. Thus, both steps have to be performed in the pixel
shader instead. In order for this to work, the hardware is required to
allow the output of per-pixel arithmetic operations to be used as tex-
ture coordinates in the pixel shader, which is already possible on the
most recent generations of programmable graphics cards. Further-
more, the pixel shader must be able to determine which MIP map
level the hardware is actually using for the pixel under considera-
tion. Currently, this is only possible with a workaround, where in
addition to the input texture a second MIP mapped texture is used,
which only contains information about the MIP map levels them-
selves, instead of actual data used for rendering. In order to obvi-
ate this additional texture traffic, we propose adding an instruction
to the instruction set of pixel shaders that allows determining the
MIP map level corresponding to the current pixel.

The combination of MIP mapping and high-resolution convolu-
tion is currently implemented as follows. In addition to the textures
needed by the basic algorithm, where the input texture now contains
several MIP map levels, we also use a second MIP map containing
information needed by the pixel shader in order to accommodate the
changing texture resolution in the convolution algorithm. Depend-
ing on the resolution of the current MIP map level, two different
kinds of information are needed. First, the texture coordinate offset
from one input texel to the next, which usually is 1/texture_size.
Second, the scale factor required for mapping whole filter tiles to
single input texels (tile_size). The first value is multiplied by a pass-
specific offset, which is given in the unit of whole texels, and added
to the texture coordinates of the input texture. The second value
cannot easily be stored in a texture, since it is greater than one.
Therefore, instead of storing it directly, we store a factor that de-
termines how the texture coordinates for the largest MIP map level
need to be scaled down in order to correspond to the current level:
tile_size/largest_level _size. This value is then multiplied by the in-
terpolated texture coordinates of the texture unit corresponding to
the tile texture.

2.3 Filter kernel range considerations

Although signed texture formats have already become available,
the fundamental problem that has to be overcome when using filter
kernels that contain negative as well as positive values, is that the
[0, 1] range of current frame buffers must never be exceeded in ei-
ther direction between rendering passes. Note that increased frame
buffer range — at least to [—1, 1] — would obviate many or all of the
workarounds outlined in this section.

Using filter kernels containing negative weights. Many rele-
vant filter kernels change sign only at the integers. For example,
the zero-crossings of all useful interpolatory filters are integers. In
this case, filter tiles are either entirely positive, or entirely negative,
which can easily be handled by storing the absolute values of nega-
tive tiles, and subtracting from the frame buffer instead of adding to
it. Second, even if single filter tiles contain weights of mixed sign,
the problem can be solved by splitting up these tiles into two tiles.
One tile for all positive values, where the others are set to zero, and
one tile for the absolute values of all negative values, where once
again the others are set to zero. Since the two split tiles have to be
handled in separate passes, tiles that need to be split increase the
overall number of rendering passes. In any case, care must be taken
with respect to the order of passes, since subtracting from the frame
buffer can only avoid clamping artifacts if sufficiently positive val-
ues have been written previously. Furthermore, depending on the
actual function of the filter kernel, even entirely positive tiles may
need to be split up in presence of other tiles containing negative
values. This becomes necessary if the distribution of values is in
such a way that intermediate results go above one when beginning
with highly positive filter tiles, or below zero, when starting out
with tiles where the function has already decreased to lower levels.

The solution in such a case is to split up the highly positive tiles,
and use one part of these before the negative ones, and the other
part afterward. The actual splitting point that avoids clamping in
all cases depends on the filter kernel and we determine it via a sim-
ple numerical simulation in a pre-process. For example, very high
quality results with a bi-cubic Catmull-Rom spline can be achieved
by splitting up the center tile, which increases the number of passes
in the std-2x algorithm from sixteen to twenty.

Interpolation by pre-processing. Another possibility is to
avoid negative values in the filter kernels at all. In order to do this,
we modify the filter convolution sum (equation 1) slightly:

lz]+[m]
g@)=(f+h)@) = > cilh—i) ¥)
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The difference here is that we do not filter the actual data points but
some coefficients c[¢], and require the resulting function to interpo-
late the original data. The coefficients depend on the actual filter
used and can be calculated by matrix inversion [26]. We can now
use a non-negative filter (e.g., cubic B-spline) and still get high-
quality interpolation results [23]. The coefficients are calculated in
a pre-processing step in software. As these coefficients usually ex-
ceed the range [0, 1] we fit them into this range using simple scale
and bias operations to avoid clamping artifacts. After filtering with
the non-negative filter, where we render to a texture instead of the
frame buffer, one additional rendering pass is required to restore
the correct intensity values with an inverse scale and bias opera-
tion. Although the last pass is done in the pixel shader, the required
render-to-texture operation is rather time-consuming.

3 Surface texture (2D) convolution

The framework presented in this paper can be used as a high qual-
ity, but still very fast, substitute for the most widely used hardware
method for reconstruction of surface textures: using bi-cubic in-
stead of bi-linear interpolation. We have used cubic Catmull-Rom
splines, cubic B-splines, and windowed sinc filters with Kaiser and
Blackman windows of width four for this purpose, although other
filters can also be used. Table 5 shows frame rates we have been
able to attain for 2D convolution.

Static textures. Figures 1 and 3 show a zoom-in of a 64x64
resolution texture mapped onto a 3D object, which illustrates that
especially for textures of low resolution a higher order filter kernel
can make a tremendous difference with respect to reconstruction
quality. A case where textures of even much lower relative resolu-
tion are used frequently, are light maps for real-time display of ra-
diosity lighting solutions, e.g., in computer games. Also, in the case
of dynamic lighting via (possibly projective) texture maps [21], the
resolution relative to the base texture is often very low, making lin-
ear interpolation artifacts strongly visible. Our framework filters
in texture space and is therefore independent from the kind of pro-
jection used. Textures can be mapped to any underlying geome-
try. Furthermore, high-quality reconstruction of 2D textures can be
used for high-quality volume rendering, where the indiviual slices
constituting the volume are filtered via high-resolution convolution
(figure 5). Since our framework employs multiple rendering passes,
transparent polygons cannot be handled directly. As in all multi-
pass algorithms, the computation split up into these passes must
not interfere with the blending operation used for transparency. In
our case, this means that transparent polygons must first be filtered
in an off-screen buffer, and the already filtered result must be used
when blending into the frame buffer.

Pre-rendered texture animations. In texture animations, such
as the one shown in figure 2, the artifacts of linear interpolation
are even more pronounced than in the case of static textures. The



underlying grid appears as “static” layer beneath the texture itself.
These artifacts are successfully removed to a sufficient extent by
bi-cubic interpolation, which can be seen very well in the accom-
panying video.

Procedural texture animations. When texture animations are
generated procedurally, lower texture resolution speeds up the gen-
eration process, because fewer samples need to be generated. If the
texture is generated using the CPU, this also decreases download
time to the graphics hardware. Figure 1 also shows a comparison of
two low-resolution procedural textures generated on the GPU itself,
and subsequently filtered on-the-fly by the hardware.

4 Solid texture (3D) convolution

All the applications presented in the previous section also arise in
three dimensions. Although in 3D an increased number of render-
ing passes and — in the case of a non-separable kernel — more tex-
ture memory is needed than in 2D, it is still possible to filter solid
or volumetric textures at real-time frame rates (see table 5).

Static textures.  Due to their highly increased memory con-
sumption, solid textures are usually of rather low resolution. Fig-
ure 4 shows an example of an object mapped with a solid texture,
where tri-cubic convolution significantly enhances image quality.

Animated textures. Although several frames of 3D textures
usually consume too much texture memory for feasible use, such
textures can be generated procedurally on-demand. Especially
when the procedural texture is also generated in hardware, this
is feasible for low resolutions. Using higher-order filtering again
helps to overcome the low-resolution sampling.

5 Summary and conclusions

In this paper we present a framework for performing convolution
with basically arbitrary high-resolution filter kernels in graphics
hardware extremely quickly. In order to exploit different filter prop-
erties and speed/quality trade-offs, we have described several differ-
ent algorithms, which have been implemented on both the NVIDIA
GeForce 3 and the ATl Radeon 8500. They make use of state-of-
the-art hardware features such as vertex shaders, pixel shaders, and
multi-texturing, and are able to exploit almost any number of tex-
ture units. Although we are focusing on reconstruction filters, the
presented approaches can be combined with per-pixel MIP mapping
as approximation to prefiltering, which is crucial for high-quality
reconstruction to become a real alternative to linear interpolation.

We have shown a number of applications for the especially in-
teresting cases of cubic filters, and we propose cubic convolution
as feasible real-time substitute for linear interpolation, which is
able to avoid many of the artifacts associated with the latter. In
general, high-quality reconstruction is especially suited to anima-
tions, where the integer lattice is often tremendously visible when
using linear interpolation. The texture memory footprint of high-
resolution filters can be very low. Cubic convolution from one to
three dimensions can be done with as few as two 1D textures con-
taining only 64 samples each. Also, the number of rendering passes
required is suited to current hardware. Bi-cubic convolution is pos-
sible using from two to sixteen passes, tri-cubic convolution from
eight to 64, depending on the algorithm employed.

Graphics hardware architectures are currently in the process of
becoming much more programmable in order to serve as back-end
for high-level real-time shading languages [18, 20], which can now
be extended with programmable convolution filters. The migra-
tion towards real-time shading languages also necessitates higher-
precision frame buffers, which will increase the variety of filter ker-
nels that can be used by our framework in practice, especially with
regard to filter width.
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Figure 3: Filtering a 64x64 texture mapped several times onto a geometric object; from left to right: bi-linear interpolation, Catmull-Rom
spline, Kaiser-windowed sinc, cubic B-spline. The corresponding frame rates are shown in table 5.

Figure 4: Filtering a 128* solid texture encompassing a geometric object; the two reconstruction filters used in these images are tri-linear
interpolation (a), and a tri-cubic B-spline (b). The corresponding frame rates are shown in table 5.

Figure 5: Different examples of using high-resolution convolution for filtering 2D textures with high quality. The three images on the
upper left show a frame from a pre-rendered procedural fire animation with the magnified region filtered by the hardware-native bi-linear
interpolation and a high-resolution bi-cubic B-spline, respectively. The three images on the lower left show a frame from a procedural fire
animation that is generated on-the-fly on the GPU (the graphics hardware) itself. Once again, the magnified region has been filtered by
using the bi-linear interpolation and a high-resolution bi-cubic B-spline, respectively. The two images on the right-hand side show a volume-
rendered image of a hydrogen atom stored in a 64> volume and rendered by compositing 64 2D-texture mapped slices on top of each other.
On the top, these slices have been individually filtered by bi-linear interpolation, whereas on the bottom a high-resolution bi-cubic B-spline
has been used for this purpose. In this case, the artifacts removed by higher-order interpolation are especially visible.



