
Time-critical Rendering of Discrete and Continuous Levels
of Detail

Christopher Zach
VRVis Research Center

Inffeldgasse 16
A–8010 Graz

zach@vrvis.at

Stephan Mantler
VRVis Research Center
Donau–City–Straße 1

A–1220 Wien

step@vrvis.at

Konrad Karner
VRVis Research Center

Inffeldgasse 16
A–8010 Graz

karner@vrvis.at

ABSTRACT
We present a novel level of detail selection method for real-time
rendering, that works on hierarchies of discrete and continuous rep-
resentations. We integrate point rendered objects with polygonal
geometry and demonstrate our approach in a terrain flyover appli-
cation, where the digital elevation model is augmented with forests.
The vegetation is rendered as continuous sequence of splats, which
are organized in a hierarchy. Further we discuss enhancements to
our basic method to improve its scalability.

Categories and Subject Descriptors
I.3.7 [Three-Dimensional Graphics and Realism]: Virtual reality

Keywords
Real-time rendering, level of detail management, point rendering,
rendering of vegetation

1. INTRODUCTION
Time-critical rendering ensures guaranteed frame rates even for

scenes with very high complexity. Therefore it provides a conve-
nient framework for real-time rendering applications. Typically a
time-critical framework mainly consists of a level of detail (LOD)
selection method, that chooses the most valuable representation for
visible objects not exceeding the available rendering budget.

We present a time-critical rendering approach that combines dis-
crete and continuous LOD selection and we demonstrate its benefits
in a terrain flyover application. Our LOD selection method is based
on an iterative optimization method over mixed (discrete and con-
tinuous) variables, that essentially combines previously used ap-
proaches for discrete and smooth LOD selection. Further we de-
scribe an extension to this basic LOD selection method to handle a
large number of objects with smooth representations.

Our testing application consists of a terrain rendering system
augmented with the ability to display dense vegetation. We employ
point based representations of procedurally generated trees for this
task.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VRST’02,November 11–13, 2002, Hong Kong.
Copyright 2002 ACM 1-58113-530-0/02/0011 ...$5.00.

In Section 2 we give an overview of previous work related to
time-critical rendering and visualization of vegetation. Our own
LOD selection method is described in Section 3. Our testbed is
briefly sketched in Section 4 and details on the implementation are
given in Section 5. A section on obtained results and on conclu-
sions and future work close this paper.

2. PREVIOUS WORK

2.1 Time-critical Rendering
Most work on rendering acceleration techniques focuses on im-

proving the frame rate while maintaining a controlled image qual-
ity. We aim on real-time rendering that guarantees a user given
frame rate regardless of the complexity of the scene. The rendering
process of every frame has to meet strict timing constraints and the
goal of the rendering framework is to attain the best visual quality
with the available rendering time. In this section we summarize
related work on time-critical rendering.

2.1.1 Discrete Level of Detail Management
Most scene graph libraries use distance based or screen size based

LOD switching to accelerate rendering of complex scenes. The
rendering time for each frame depends on the scene content, the
viewing parameters and the LOD switching threshold, but it can
be arbitrarily large. In terms of optimization these methods maxi-
mize the frame rate subject to controlled image quality. Whenever
a guaranteed interactive frame rate is needed, the role of frame rate
and image quality must be exchanged: maximize the image quality
that is achievable subject to controlled render time.

Funkhouser and Séquin [3] formulated this optimization task as
a multiple choice knapsack problem (MCKP), which is known to
be NP-hard, and used an approximation method to select the ap-
propriate LOD for each object to be rendered. The importance of
every object and the accuracy of every LOD depend on the viewing
parameters, thus the MCKP must be solved for every frame.

Solving the MCKP needs a certain amount of time, which may
affect the rendering performance on a uniprocessor computer. Funk-
houser and Séquin used a dual processor solution for rendering:
one processor selects the representations for the next frame and the
other processor feeds the graphics pipeline.

This approach has one major disadvantage: visible objects may
be completely missing in the rendered image, if the allowed render-
ing time is not large enough to draw at least the coarsest representa-
tion of every visible object. Both Mason and Blake [13] and Maciel
and Shirley [11] utilized a hierarchical level of detail approach and
used variations of the MCKP to select appropriate representations
for every frame. Mason and Blakes approximation method of their

1

extended MCKP can be seen as a top down greedy traversal of the
LOD hierarchy and guarantees half optimality, whereas Maciel and
Shirleys heuristics don’t provide such lower bounds. An extensive
discussion of LOD management approaches can be found in [12].

Since in our implementation the selection of discrete levels of
detail is based on Mason and Blakes work, we describe their idea
briefly. Basically their LOD selection performs a sequence of so
called increment steps as long as the rendering budget constraint
is not violated. An increment step replaces a currently selected
representation by the most valuable successor nodes in the LOD
hierarchy. A converse decrement step is also introduced, which
replaces least rated successor nodes with their parent. The root
node (representing the entire scene at the coarsest level) is the ini-
tially selected representation. Additionally Mason and Blake ex-
ploited frame–to–frame coherence using the LOD assignment for
the previous frame as starting point for a sequence of increment
and decrement steps. Since our approach does currently not ex-
ploit frame–to–frame coherence and therefore starts from scratch
at every frame, our method performs only increment steps.

2.1.2 Multiresolution Level of Detail Management
If the object representation allows smooth levels of detail, a

similar optimization problem can be formulated, where the dis-
crete variables are replaced by continuous ones. Gobetti and Bou-
vier [4], [5] applied optimization techniques for solving non-linear
constrained systems to time-critical rendering of multiresolution
meshes. They partitioned the available frame time into the time
available to the LOD selection procedure and the actual rendering
time. Their LOD selection method proceeds incrementally by suc-
cessively improving the current solution. Thus, this method can be
interrupted at any time returning a suboptimal, but feasible solu-
tion.

Their LOD selection procedure is not applicable to scenes with
a large number of multiresolution objects, since they assign one
variable to every object.

Wimmer and Schmalstieg [20] describe a direct (non iterative)
solution for smooth LOD selection using Lagrange multipliers, but
they take only the rendering budget constraint into account and ig-
nore potential constraints on the maximal resolution of every ob-
ject. Therefore this approach works well only for objects with vir-
tually unbounded resolution.

Schmalstieg and Fuhrmann [17] implemented a LOD selection
policy for hierarchical and deformable multiresolution models and
applied their method to character animation and terrain rendering.

2.2 Point based Rendering
Point based rendering was first introduced by Levoy and Whit-

ted [9]. They observed that with the growing complexity of com-
puter generated scenes, classical modeling primitives such as trian-
gles become less appealing. Using points as a rendering primitive
bears several advantages, such as being able to render arbitrarily
complex geometry with a standardized rendering algorithm.

Point based rendering is also applicable to the direct rendering
of volumetric data, first introduced by Westover [19] and improved
by numerous authors.

Pfister et al. [14] and Rusinkiewicz et al. [16] almost simultane-
ously published new point based systems that used additional in-
formation, such as surface normals and texture data, for each point
sample. However, the method introduced by Pfister was aimed at
high fidelity, whereas Rusinkiewicz was more interested in han-
dling huge amounts of data. The goal was to interactively visualize
laser scans of up to 2 billion samples at interactive frame rates.
Therefore, they designed a hierarchical data structure that allowed

lower resolutions to be displayed even while additional data was
still being read in.

Recently Cohen et al. [2] and Chen and Nguyen [1] combined
polygonal and point based rendering by exploiting a hybrid repre-
sentation of the entire scene. This is different to our approach, since
we represent one object either point based or polygonal.

2.3 Terrain Visualization
Recent work on large scale terrain visualization with regular

heightfields was done for instance by Hoppe [7] and Lindstrom and
Pascucci [10]. Both approaches employ a smooth level of detail
framework and the required resolution is calculated from the al-
lowed screen space error. This threshold can be adaptively refined
during the animation to match the desired frame rate.

If the scene database consists of several LOD hierarchies (e.g.
terrain augmented with vegetation), the adjustment of resolutions
of different parts is no longer unique. Therefore we utilize a pre-
dictive model of the visual quality and rendering cost to calculate
the appropriate resolution for each scene component.

Our terrain visualization is based on the Styrian flyover project
(Kofler et. al. [8]), which uses a quad-tree representation of the
digital elevation model and the ground texture. During rendering
the determination of the required resolution is based on the distance
to the virtual camera.

The quadtree approach can be seen as a coarse variant of view–
dependent multiresolution meshes (e.g. view–dependent progres-
sive meshes, VDPM [6]). Even with smoother view–dependent
progressive meshes our method described in Section 3 remains the
same, since the current level of detail of a VDPM consists of a
(discrete) set of nodes in the VDPM representation.

3. MIXED LEVEL OF DETAIL SELECTION
In this section we present a LOD selection method for scenes,

that consist of objects represented by discrete and smooth levels of
detail.

3.1 Overview
Essentially our algorithm performs in every iteration either a

greedy refinement step of discrete levels of detail or a gradient
ascent step for smooth representations, whatever is favourable in
terms of (estimated) visual benefit to rendering cost ratio. The it-
eration stops when the available rendering budget is exhausted, the
highest level of detail of visible objects is attained or the time avail-
able to the optimization procedure itself is completely spent. In any
case the obtained assignment of resolution for every object is fea-
sible.

Since in our application there is a huge number of smoothly rep-
resented objects and therefore a huge set of continuous resolutions
to determine, we utilize a hierarchical arrangement to accelerate the
LOD selection procedure.

3.2 Problem Formulation
We consider the LOD selection problem for discrete and con-

tinuous variables. A set of representations {ri} of discrete objects
and a set of objects {oi} with smooth levels of detail are given.
We will identify rj with a boolean variable of the same name; we
set rj = 1, if the LOD selection chooses rj for rendering in the
next frame and rj = 0 otherwise. Additionaly we associate a con-
tinuous variable xi with oi, that denotes the chosen resolution for
rendering oi.

For every representation a pair of functions is given: the first
function (the benefit) estimates the effect on the visual quality, if
this representation is rendered; the other one estimates the corre-

2

sponding cost of drawing (i.e. the rendering time). For discrete ob-
jects we denote these two functions by benefitd(ri) and costd(ri)
respectively. For objects with continuous resolutions these func-
tions have the resolution xi as the argument and are written as
benefitc(xi) and costc(xi). Obviously these functions depend
on the current viewing parameters, but for convenience we will not
expose this dependency explicitly.

The task of the LOD selection method is to choose rj and xi:

max
∑

j

benefitd(rj) +
∑

i

benefitc(xi) s.t.

∑
j

costd(rj) +
∑

i

costc(xi) ≤ T

rj ∈ {0, 1}
xi ∈ [0, 1]

We restrict the resolution xi to the range [0, 1], where xi = 1 rep-
resents the maximal resolution assigned to a multiresolution object.
Further there are usually more constraints related to rj , that encode
the LOD hierarchy (details can be found in Mason and Blake [13]).

We aggregate the xi into one vector �x and denote the total cost
caused by rendering smooth representations by

costc(�x) =
∑

i

costc(xi).

Similarly we define the total benefit of rendering the smooth levels
of detail at resolution �x as

benefitc(�x) =
∑

i

benefitc(xi).

3.3 Terminology
We require some additional notation to express the algorithm and

its derivation in a compact manner. For any current assignment of
smooth variables �x and an arbitrary search direction �a (with ‖�a‖ =
1) we define the directional cost function

ĉostc(t) := costc(�x+ t�a)

and (by the chain rule) we have

dĉostc
dt

= (�a, ∇�xcostc(�x+ t�a))

(We denote the inner product of �a and �b by (�a,�b).) Similarly, we
introduce the directional benefit function

b̂c(t) = benefitc(�x+ t�a).

Again, we will need the derivative in the following sections:

db̂c

dt
= (�a, ∇�xbenefitc(�x+ t�a)).

These functions depend on �x and �a as well, but for clarity we omit
these arguments, since they are clear from the context.

3.4 Optimization Method
Essentially our method is an interleaved combination of Masons

and Blakes [13] increment steps for discrete LODs and gradient
ascent steps for smooth representations. The optimization method
works iteratively: Given a current assignment of discrete and con-
tinuous resolutions for each object, one of three cases may occur:

1. The rendering budget or the time available to LOD selection
is exhausted and the procedure terminates with the current
solution.

2. The discrete variables and therefore the total benefit and costs
are increased.

3. The smooth resolutions are raised, thus increasing both the
total benefit and cost.

In every iteration, the algorithm decides either to increase the dis-
crete or continuous variables. If the discrete variables are already
at the highest resolution or increasing every possible discrete rep-
resentation causes violation of the constraint, the algorithm tries to
enhance the smooth representations.

On the other hand, if the smooth levels are already at the highest
resolution, only improving the discrete resolutions is considered by
the algorithm.

If both improvement steps are feasible, then the algorithm com-
pares the added benefit to added cost ratio of the best discrete im-
provement with the slope of the benefit function along the search
direction. More formally we denote the added benefit obtained by
the increment step as ∆benefitd and the corresponding cost as
∆costd. The quantities to compare are

sloped =
∆benefitd

∆costd

and

slopec =
db̃c

dcost
(costc(�xi)),

where

b̃c(cost) = b̂c(ĉost
−1

c (cost)).

Applying the chain rule we obtain

db̃c

dcost
(costc(�xi)) =

db̂c

dt
(0)

1

(�a, ∇�xcostc(�xi))
.

(Recall that b̂c implicitely depends on the current assignment �x and
the current search direction �a.)

If sloped > slopec, then incrementing the discrete LODs is cer-
tainly favourable. Otherwise the smooth variables are increased
and the new solution �xnew is set according to

�xnew = �x+ topt �a.

3.4.1 Selection of the Search Direction
Essentially the search direction �a is the gradient of bc(�x). If xi

is already saturated (xi = 1), then ai = 0. To avoid too small steps
because of repeated saturation of smooth variables, approaching the
boundary xi ≤ 1 can be penalized by a barrier term, e.g.:

ai = max

{
0,

∂b

∂xi
(�x)− ε

1− xi

}
,

where ε is a small constant.

3.4.2 Line Search
Given the search direction �a, �x + t�a leaves the feasible region

for some tmax > 0. If db̃c/dcost > sloped at tmax, then topt =
tmax, since raising the continuous resolutions along the search di-
rection �a gives always better values.

Otherwise we determine topt ∈ (0, tmax) such that

db̃c

dcost
(ĉostc(topt)) = sloped.

Thus, we increase the values of the smooth variables as long as this
is preferable over the discrete incrementation step. The graphical
explanation is given in Figure 1.

3

benefit

cost

Q
P

R

Figure 1: Determination of topt. The dashed line corresponds
to a discrete increment step, whereas the solid curve illustrates
b̃c. P represents the location in the benefit/cost space after the
discrete increment step, Q corresponds to the optimal increase
of the continuous resolutions and R depicts the added result.

3.5 Continuous Variable Splitting
The optimization procedure described in Section 3.4 turned out

to be not sufficiently scalable, because the number of continuous
variables is unnecessarily large for certain viewpoints. Although
the time used for LOD selection can be amortized over several
frames, there is an even better option available. We observed, that
(almost) identical resolutions are often assigned to spatially close
smooth objects. Therefore we augmented view frustum culling of
smooth objects with hierarchical splitting of variables.

The idea is the following: Consider the optimization problem
described in Section 3.2 augmented with additional constraints:

x1 = x2 = . . . = xn (1)

These constraints ensure that the continuous variables always have
the same value. The optimal value of this tightened problem yields
a non-optimal assignment of smooth LODs, but this loss in opti-
mality can be predicted. If the estimated loss is smaller than some
threshold θ, we replace the n smooth variables by only one, namely
x, and set xi = x/n. Additionally we replace the upper bounds on
xi with x ≤ n. Note, that the benefit and cost is still expressed wrt.
xi, e.g. ∑

benefitc(xi) = n benefitc(x/n).

Otherwise we relax constraint 1 and replace it by one of the follow-
ing four constraints:

x1 = . . . = xn/4

xn/4+1 = . . . = xn/2

xn/2+1 = . . . = x3n/4

x3n/4+1 = . . . = xn

These groups of variables correspond to child nodes in a quad-tree
structure, in which the smooth objects are organized. For each
of these constraints we estimate the loss in the corresponding op-
timization problem and compare it with an appropriate threshold
θ/4. If the loss is too large, the corresponding group of variables
is recursively divided (i.e. the quad-tree node is replaced by its
children) until the loss is small enough or the original variables are
reached.

The detailed description of this splitting method is postponed to
Appendix A.

4. TEST APPLICATION
Our test application consists of a terrain flyover scenario show-

ing a large part of the Styrian province. The data set and our ap-
proach to terrain visualization is taken from the Styrian flyover
project (Kofler et al. [8]). The complete height field consists of
2049 × 2049 samples covering a region of about 120 × 120km2.
The corresponding texture has a resolution of 4096 × 4096. Both
the height field and the associated texture fit entirely into main
memory.

About 1.4 million trees are placed on a jittered grid into the ter-
rain according to the forest regions found by image classification
of the satellite image. The heights of these trees are exaggerated
to have a closer match between the resolution of the ground tex-
ture and the vegetation. The type of tree was selected randomly,
but spruces are more likely in higher terrains. In valleys and other
lower parts the forest is a mixture of various conifers and broad-
leafed trees.

The digital elevation model and the ground texture are organized
in a quad-tree data structure as it is commonly used in terrain visu-
alization systems (e.g. the Styrian Flyover project [8], TerraVision
II [15]). This quad-tree forms the discrete LOD hierarchy.

The trees are grouped into sets of at most 64 spatially close, indi-
vidual trees and the appropriate resolution is determined for these
groups. A quad-tree hierarchy is employed again to speed up view
frustum culling and to allow variable splitting as described in Sec-
tion 3.5.

5. IMPLEMENTATION
In this section we provide some details on our implementation.

5.1 Tree Generation
In the current system, the tree generation itself is based on the

algorithm by Weber and Penn [18]. Tree models are generated of-
fline and stored on disk in an intermediate format, storing geomet-
ric information for each stem or branch as well as leaf locations.
Upon startup of the test application, the desired trees are read in
and the branch information is added as a list. The leaf position data
is converted to a K-d-tree by recursively splitting the volume at the
median of the longest axis. Each model is only read in once, and
instances can be made by setting up the OpenGL transformations
as required.

5.2 Point based Tree Rendering
The point based renderer is called seperately for each tree, giv-

ing the rendering system fine control over the fidelity of each tree
instance. Visual quality is controlled through a budget value that
is passed to the rendering function. This value basically represents
the number of point samples that may be rendered for this particu-
lar instance. In addition, the current view direction is also available
to the renderer. Since many leaves on the back side of the tree
are possibly obscured, the view direction can be used to advise the
renderer where to spend more of the total budget.

The rendering itself is a recursive traversal of the K-d-tree; at
each level, the budget is divided between each of the branches. If
the budget reaches zero, the current level is rendered as one point
splat.

5.3 Benefit and Cost Heuristics
Predicting the cost of rendering a representation is based on a

model of the graphics pipeline. The cost of rendering a splatted
representation is directly proportional to the resolution, i.e.

costc(xi) = csplat Nsplats xi + ctree,

4

where csplat denotes the rendering time for one splat and ctree de-
notes the cost for individual tree setup, e.g. for transformation of
the tree prototype to the final tree position. Both values are deter-
mined by a benchmarking procedure. On our hardware csplat is
0.35µs and ctree is 2.45µs.

Since our polygonal objects (patches of a regular digital eleva-
tion model) consist of long triangle strips, we estimate the render-
ing cost as

costd(n) = cvertex n,

where n is the number of sent vertices in the triangle strip and
cvertex is again an empirically measured combined cost for vertex
and triangle processing (determined as 0.06µs on our hardware).

The benefit functions are chosen as follows: For every terrain
patch at level d the benefit is approximated by

√
2dmax−d S,

where S is the estimated screen size in pixels and dmax is the height
of the terrain quad–tree.

The benefit associated with a group of Ntrees trees is chosen as

k S2 Ntrees

64

√
xi

Ntrees
Nsplats,

where S is again the estimated screen size and xi is the assigned
resolution. k is a weighting constant currently set to 1/16. Recall
that Ntrees

64
denotes the relative density of trees in one group con-

taining at most 64 trees. We assign a higher benefit to trees with
larger extents on the screen to avoid sparse splatting of vegetation
in the foreground.

5.4 Small Detail Culling
In order to avoid expensive transformations to position the tree

templates we perform small detail culling for groups of trees, which
have a very small estimated screen size. This culling process is per-
formed in combination with view frustum culling. The remaining
nodes (collections of trees according to the quad-tree hierarchy) are
passed to the LOD selection procedure.

If the point budget assigned to a group of trees is not sufficient
to display each tree with at least one splat, only the correspond-
ing fraction of the group is rendered. Thus, we obtain a smoother
transition between culled vegetation and still displayed groups.

6. RESULTS
We performed several measurements on a notebook computer

with 1GHz processor and GeForce2 Go graphics card. Figure 4
shows frames from our demonstration application at various frame
rates. It can be clearly observed, that trees closer to the virtual
viewpoint have higher resolution than distant vegetation. Figure 2
compares the predicted rendering time with the actual rendering
time. Since trees with an assigned resolution of less than one splat
are not displayed at all, the available rendering budget is usually
not completely exploited.

Further we measured the time spent in the optimization proce-
dure. LOD selection times without the hierarchical variable split-
ting approach for a fixed path are shown in Figure 3 as solid line,
whereas the time spent for LOD selection with the variable splitting
approach is drawn as dashed line. These timings include culling
and the actual LOD selection. The time used for view frustum
culling is usually less than 2ms. Note that the vertical axis has
logarithmic scale and the basic method took longer than 1 second
in the worst case. Obviously the later, enhanced method is far more
favourable.

7. CONCLUSIONS
We presented a time-critical LOD management method that in-

corporates discrete and continuous levels of detail. Our approach
combines approximation methods for discrete LOD selection with
gradient ascent methods to choose an appropriate multiresolution
representation. A terrain flyover application comprises the current
testbed for our LOD management procedure.

In this work our main focus is the LOD selection method and we
are aware that both terrain rendering and drawing of vegetation can
be substantially enhanced. Especially our prototype of the point
based vegetation renderer can be highly accelerated. Nevertheless
our work demonstrates the prospects of mixed resolution objects
within a time-critical framework.

We intent to utilize this approach in an urban visualization appli-
cation, which aims on the real-time photorealistic presentation of
an existing city. Further we will refine the terrain rendering engine
and work on improvements on the drawing of vegetation. Addition-
ally occlusion culling in terrain environments would significantly
increase the accuracy of our LOD selection.

8. ACKNOWLEDGEMENTS
We would like to thank Martin Urschler for the terrain rendering

implementation and Matthias Rüther for his forest segmentation.
Further we would like to thank Horst Bischof for valuable sugges-
tions.

This work has been done in the VRVis research center, Graz and
Vienna/Austria (http://www.vrvis.at), which is partly funded by the
Austrian government research program Kplus.

9. REFERENCES
[1] B. Chen and M. X. Nguyen. POP: a hybrid point and

polygon rendering system for large data. In IEEE
Visualization 2001, pages 45–52, 2001.

[2] J. D. Cohen, D. G. Aliaga, and W. Zhang. Hybrid
simplification: Combining multi–resolution polygon and
point rendering. In IEEE Visualization 2001, pages 37–44,
2001.

[3] T. A. Funkhouser and C. H. Séquin. Adaptive display
algorithm for interactive frame rates during visualization of
complex virtual environments. In Proceedings of
SIGGRAPH ’93, pages 247–254, 1993.

[4] E. Gobbetti and E. Bouvier. Time-critical multiresolution
scene rendering. In IEEE Visualization ’99, pages 123–130,
1999.

[5] E. Gobbetti and E. Bouvier. Time-critical multiresolution
rendering of large complex models. Journal of
Computer-Aided Design, 32(13):785–803, 2000.

[6] H. Hoppe. View-dependent refinement of progressive
meshes. In Proceedings of SIGGRAPH ’97, pages 189–198,
1997.

[7] H. Hoppe. Smooth view-dependent level-of-detail control
and its application to terrain rendering. In IEEE Visualization
’98, pages 35–42, 1998.

[8] M. Kofler, M. Gervautz, and M. Gruber. The Styrian Flyover
– LOD management for huge textured DTM models. In
Proceedings of Computer Graphics International, pages
444–454, 1998.

[9] M. Levoy and T. Whitted. The use of points as a display
primitive. Technical report, Univ. of North Carolina at
Chapel Hill, Dept. of Computer Science, 1985.

5

30000

40000

50000

60000

70000

80000

90000

100000

0 100 200 300 400 500 600

tim
e

in
 m

ic
ro

se
cs

frame no

actual rendering time
predicted rendering time

(a) Total rendering time per frame

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 100 200 300 400 500 600

tim
e

in
 m

ic
ro

se
cs

frame no

actual tree rendering time
predicted tree rendering time

(b) Rendering time for point based vegetation only

Figure 2: Predicted and actual rendering times for a fly–over path. The rendering budget was 100ms per frame. The solid lines
depict actual rendering times, whereas the dashed lines represent predicted frame times.

1000

10000

100000

1e+06

1e+07

0 50 100 150 200 250 300

tim
e

in
 m

ic
ro

se
cs

frame no

without variable splitting
with variable splitting

Figure 3: LOD selection times for the basic LOD selection method (solid line) and the enhanced method with variable splitting
(dashed line). The available rendering budget was 100ms in both cases.

6

[10] P. Lindstrom and V. Pascucci. Visualization of large terrains
made easy. In Proceedings of IEEE Visualization 2001,
pages 363–370, 2001.

[11] Paulo W. C. Maciel and Peter Shirley. Visual navigation of
large environments using textured clusters. In Symposium on
Interactive 3D Graphics, pages 95–102, 211, 1995.

[12] A. E. W. Mason. Predictive Hierarchical Level of Detail
Optimization. PhD thesis, University of Cape Town, 1999.

[13] A. E. W. Mason and E. H. Blake. Automatic hierarchical
level of detail optimization in computer animation. Computer
Graphics Forum, 16(3):191–200, 1997.

[14] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. In Proceedings of
SIGGRAPH 2000, pages 335–342, 2000.

[15] M. Reddy, Y. Leclere, L. Iverson, and N. Bletter. TerraVision
II: visualizing massive terrain databases in VRML. IEEE
Computer Graphics and Applications (Special Issue on
VRML), 19(2):30–38, 1999.

[16] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution
point rendering system for large meshes. In Proceedings of
SIGGRAPH 2000, pages 343–352, 2000.

[17] D. Schmalstieg and A. Fuhrmann. Coarse view-dependent
levels of detail for hierarchical and deformable models.
Technical report, Vienna University of Technology, 1999.

[18] J. Weber and J. Penn. Creation and rendering of realistic
trees. In Proceedings of SIGGRAPH ’95, pages 119–128,
1995.

[19] L. Westover. Interactive volume rendering. In Volume
Visualization Workshop, pages 9–16, 1989.

[20] M. Wimmer and D. Schmalstieg. Load balancing for smooth
LODs. Technical report, Vienna University of Technology,
1998.

APPENDIX

A. THE CONTINUOUS VARIABLE SPLIT-
TING METHOD

Let oi, i ∈ {1, . . . , n} be a set of objects with smooth LODs. If
xi is the resolution assigned to oi, then the total benefit is

∑
ci
√
xi

for suitable ci (essentially proportional to the square of the esti-
mated screen size, see Section 5.3). Our goal is the estimation of
the maximal benefit loss, if we replace the assigned resolutions xi

by the mean
∑

xi/n. Further we assume, that
∑

xi is bounded by
the available budget X . Overall we search for the solution of

max
∑

ci
√
xi −

∑
ci

√
X

n
s.t.∑

xi = X the budget is limited∑
ci = C the screen extent is bounded

xi ≥ 0

ci ≥ 0

The maximum is attained if c1 = C and ci = 0 for i > 1. This
implies, that x1 = X and xi = 0 for i > 1. In this case the error is

C
√
X(1− 1√

n
).

This observation can be used to guide the process of splitting con-
tinuous variables. The recursive procedure to associate continuous
variables with groups of smooth LOD representations is given in
Algorithm 1. Instead of using the same total resolution X (which
can be computed from the available rendering budget), we estimate
the allowed maximal resolution for every child node.

Algorithm 1 Determine the required granularity of smooth vari-
ables
Function SplitVar
Input: Node, X , depth d, tree height dmax, ε
S ← screen coverage of Node

if k S2
√
X

(
1− 1√

2dmax−d

)
< ε

2dmax−d then

Associate a continuous variable with Node
else
{Solve the continuous LOD selection problem for the children
Childi of Node and obtain X1, . . . , X4}
{The solution can be directly calculated using Lagrange mul-
tipliers}
Si ← screen coverage of Childi

Xi ← X/
∑

S4
i

for i = 1 to 4 do
Call SplitVar(Childi, Xi, d+ 1, ε) recursively

end for
end if

7

(a) 80ms

(b) 100ms

(c) 150ms

Figure 4: A view on the terrain with different rendering budgets. The size of the point splats is 2 pixels. (This figure is reproduced in
color on page 209.)

8

