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Abstract

The watershed algorithm belongs to classical algorithms in mathematical morphology. Lotufoptldished a prin-

ciple of the watershed computation by means of an iterative forest transform (IFT), which computes a shortest path
forest from given markers. The algorithm itself was described for a 2D case (image) without a detailed discussion of its
computation and memory demands for real datasets.

As IFT cleverly solves the problem of plateaus and as it gives precise results when thin objects have to be segmented,
it is obvious to use this algorithm for 3D datasets taking in mind the minimizing of a higher memory consumption for
the 3D case without loosing low asymptotical time complexity (@f©C) (and also the real computation speed). The

main goal of this paper is an implementation of the IFT algorithm with a priority queue with buckets and careful tuning

of this implementation to reach as minimal memory consumption as possible.

The paper presents five possible modifications and methods of implementation of the IFT algorithm. All presented im-
plementations keep the time complexity of the standard priority queue with buckets but the best one minimizes the costly
memory allocation and needs only 19-45% of memory for typical 3D medical imaging datasets.

Memory saving was reached by an IFT algorithm simplification, which stores more elements in temporary structures but
these elements are simpler and thus need less memory.

The best presented modification allows segmentation of large 3D medical dataset&12xt612 x 680 voxels) with

12- or 16-bits per voxel on currently available PC based workstations.

1. Introduction Falcad but without detailed implementation issues. An advan-
tage of this algorithm is its higher resolution, as it can correctly

The idea behind application of watersheds (WS) in a grey-scale segment blobs connected by an one-pixel thick region.

image segmentation is very simple. The aim is to find objects
and their borders. As the object borders are loci of the highest  The tuning of the implementation of the priority queue via
gradient in the image, the gradient image is taken as an input buckets to reach as minimal memory consumption as possible,
height field (topographical image) that is step by step immersed keeping the speed of the standard priority queue with buckets
into water. During the process of immersion, water fooatch- is the aim of this paper. The best of five presented algorithm
ment basinswhich correspond in an ideal case to the objects. variants needs only about one third of memory in a typical case
The creation of catchment basins begins in local minima of the of 3D medical imaging datasets.

gradient image. When these catchment basins meet (touch) a

dam is built to prevent them to join. These dams form then the
watershed lineswhich should correspond to object boundaries.

The paper has the following structure. Section 2 describes
basic terms, Section 3 the IFT algorithm as proposed by Lotufo
and Falcab, Section 4 describes five modifications of the IFT

The watershed algorithms starting in local minima suffer algorithm, Section 5 the datasets and the worst and average case
from oversegmentation if applied to images with noise, as men- analysis of the algorithms. Conclusions and the future work fol-
tioned, e.g., by Sonka For a region growing it is better to  low in Section 6.
use awatershed from markersvhere the creation of catchment
basins begins in these markers and only a given number of ob-
jects are found. 2. Definitions and notations

A very interesting algorithm for computation of watersheds Let D(X,y,z) be a volumetric dataset of sixex y x z voxels.
from given markers by means of tiiterative forest transform Let this dataset be taken as an undirected g@&ph(V, E) with
(IFT) with a priority queue has been proposed by Lotufo and node seV of sizen = xyzand arc seE of sizem=xy(z— 1) +
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x(y—1)z+ (x— 1)yz defined by a 6-connectivity of neighboring
voxels.

Letw(p,q) be a weight of the ar¢p, q) between the neigh-
boring voxels andf (u) a value stored in voxel (node) The
nonnegative integer arc weight is for the watershed algorithm
defined aswv(p,q) = |f(p) — f(q)|. Note that this formulation
of the arc weight gives a very simple approximation of a com-
plete 3D gradient as known in common sense but works cor-
rectly within this algorithm. LeC be a maximal arc weight in
the dataset.

The shortest-path forest probleffinds for each graph node
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andO(m+logC) for One level Radix heaps by Ahuja et‘al.
For Two level Radix heaps was by Ahuja et'alot mentioned.

3. IFT algorithm by Lotufo and Falcao

Lotufo and Falcabimplemented the watershed algorithm as an
Iterative Forest Transform (IFT). They accent the necessity of a
priority queue with a FIFO restriction for the correct handling
of plateaus. In the algorithn@(p) is the cost path fronp to

its nearest market,(p) is the input marker image and also the
result of the watershed partitioninglag(p) differentiates fi-

the shortest path connecting it to its nearest root node. In casenally labeled nodes from non-processed or temporarily labeled

of thewatersheds from markerghe root nodes are defined by
the user as markers of two types: the IN marker for the objects
and the OUT marker for the background. The path length is
measured by thpath costdefined as follows:

Let path cost @p,q) = [M,d] in the path from nodep to
nodeq be defined as a pair of values in lexicographic order.
The first component (with a higher priority) is theaximum arc
weight M The second componedtis a distance from the end
of the path to the nearest node with a lower path cost. Accord-
ing to Lotufo and Falcag this component reflects the flooding
process when the water reaches a plateau in the relief.

Theshortest-path cosietween two noded*(p, q) is defined
as the smallest lexicographic cost of all paths betwgandg.
The detection of the shortest-path cost from all nodes results in
the detection of the “nearest” marker for each node, i.e., label-
ing of the voxel as being part of the object or of the background.

Lotufo and Falcab describe the physical meaning in the
frame of a topological relief of the image as follows: “The arc
weight is the height of the wall between nodes and the shortest-
path cost is the minimal height where the water coming from
two points merges. ..., the second gonent of the lexico-
graphic cost allows the partition to be at the medial line of the
plateau.”

The order of en-queueing of the markers into the priority

nodes. The IFT algorithm works as follows:

1. Initialization
a) for all nodes p do
flag(p) = TEMP;
b) for all non-marker nodes p do
C(p) = infinity;
c) for all marker nodes p do
C(p) = 0; EnQueue(p,0);
2. Propagation
while QueueNotEmpty() do
a) v = DeQueueMin;
b) flag(v) = DONE;
c) for each p neighbor of v with
flag(p) == TEMP do
if max{C(v), w(v,p)} < C(p) then
A) C(p) = max{ C(v), w(v.p) }
L(p)=L(v);
B) if IsInQueue(p) then
DeQueue(p);
C) EnQueue(p, C(p));

The algorithm partitions all the graph nodes into two sets:
permanently (DONE) and temporarily (TEMP) labeled. At each
iteration step it selects a temporarily labeled node with a min-
imum cost from the priority queue as the next node to be
scanned. Once a node is processed it becomes permanently la-
beled. The algorithm terminates when all nodes become perma-

gueue is important, as it determines the order of processing of nently labeled, i.e., when the queue is empty. As the path cost is
the markers and also the shape and the size of the resulting la-a non-decreasing function, the important property of the algo-
beled area. The sooner defined markers acquire little larger ar-rithm is that when the node becomes permanent its path cost is

eas (of about one-pixel on plateaus).

The theoretical most efficient known algorithm for the
shortest-path forest problem is the Dijkstra’s algorithmhich
can be efficiently implemented by means of a priority queue.
It runs in O(m) time plus the time required to perform queue
operations.

If the arc weights are real numbers and only binary compar-

the final optimal path cost. Another important property is that
the second componeut of the path cost does not need to be
stored, as the FIFO priority queue keeps the second component
intrinsically sorted.

In the initialization phase, all the nodes are labeled as tem-
porary (line 1a), the markers have assigned a cost to O (line 1c),
all other nodes to infinity (line 1b). The markers are entered into

isons are used in the heap implementation the best possible timethe priority queue. The queue insertion sequence for markers of

for the Dijkstra’s algorithm i$D(m+ nlogn), as described e.g.
by Ahuja et al If all the arc weights are integers of moder-
ate sizeC (which is true in the case of medical datasets) spe-
cial algorithms exist that differ in the implementation of the
priority queue, running from a typical time &(m-+ nC) (the
Dial's® implementation with buckets) to the best known time
of O(m+ ny/logC) (Two-Level Radix heaps by Ahuja et §l.

which combine Radix heaps and Fibonacci heaps). These val-

the same type (e.g., only background ones—OUT) is not impor-

tant. On the other hand, the order of insertions of the markers
of a different type into the queue is important, because the fol-

lowing processing is also done in the FIFO order and the first

come marker “wins” a larger region. Therefore two separate in-

put lists of object and background markers are used and the
algorithm starts width en-queueing of the object markers.

During the propagation step, the noglewith a minimal

ues are valid for path cost defined as a sum of the weights alongpath cost is removed from the queue and marked as perma-

the path. The definition used for the watershed algorithm as de-
scribed above in this section results in a time complexity of
O(m+C) (Details in Section 5.2).

The memory complexities of these algorithms &én—+C)
for the Dijkstra’$ and the Dial’§ algorithms (up taO(n) if im-
plemented with hashing but the time is then not deterministic),

nent (lines 2a,b). All its temporarily labeled neighbgrsare
then tested and if the path cost through the permanent wode
is smaller than the temporary cost associated with mo(ime

2cA) the temporary cost and label are updated. If the node was
already in the queue it is removed (line 2cB) and finally a node
is enqueued with the priority of a new path cost (line 2cC).
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For a better understanding of the role of the distance com- Possible methods for the implementation of the IFT algorithm
ponentd it will be discussed in a greater detail: The algorithm  will be discussed below in this section.
processes the nodes from the lowest path cost to the highest,

Cessing a given tevel of path cost, all the nodss with a lower P0P0Sed by Didland useBckeor th priorty queuie imple-

! ) mentation to overcome the logarithm time complexity of heap
p_ath cost are already processed! Th_e same 1S al_so true for thebased approaches (for handling of temporary labeled nodes),
distance componerd, as all nodes with a Iower distance are which is identified as a bottleneck of the whole algorithm. The
aIrgaQy processed and only t_he nodes with d|§tal m_aadd +1 bucketk stores all temporarily labeled nodes whose distance la-
exist in the queue. More precisely, the nodes with distans® bels are equal tk (or fall within a certain range, as in other ap-

er:qst only fpr tf|1e currer:jt pgthhg:oslz Ie\@gv) ’hWh'Ch mergns,kfor proaches). The nodes in buckets can be stored in double-linked
the queue implemented with buckets, in the current bucket. lists of nodes, to which the array of pointers with a size equal

If the processed nodeis on the given “water” level, which ~ to the number of buckets points.

means it has the path cost equali), there are three possi- The Dial’'s implementation requiresC + 1 buckets in the
bilities for the neighboring nodp: worst case, whel@ is the maximal cost. However, Ahuja etéal.
proved that for a graph with a maximum cost s@&pnetwork

with a maximal arc lengtlT) only C + 1 buckets are necessary

to maintain all the temporarily stored labels in a circular queue.
As the algorithm uses the maximum on the path as a path cost,
even a circular queue is not needed and the number of buckets
Cis upper-bounded by the precisi@p of the dataset.

The IFT algorithm of Falcao and Lotufdollows the ideas

1. The path cosE(p) will not be updatedas the path through
the nodev would be more expensive. The same is truedfor
which survives unchanged (test in line 2c is false),

2. the path coswill be updatedto max{C(v),w(p,v)}, asitis
cheaper to go through the nodgtest in line 2c is true):

a) Path cost increasegthe arc weightw(p,v) > C(v)),
C(p) = w(p,v) and a new distanag( p) = 0,

b) path cost value remains, plategw(v, p) < C(p)), C(p)
remains unchanged and a new distad¢g) = d(v) + 1
is computed.

In the following text five variants of the algorithm implemen-
tation will be discussed and results of measurements of their
time and memory consumption if applied on real 3D medical
datasets will be shown. The different modifications of the algo-
rithm use different levels of simplification of the data structures
In both cases where the priority queue is updated the FIFO necessary for the implementation and therefore also change the

restriction handles correctly the insertion of a new node in the memory complexity of the algorithm in both average and worst
end of all already stored nodes. In the case 2a), a new node iscases. The algorithms have been tested in order to know which

inserted as the last node with the path cost equél(tp). All of the implementations has the minimal average memory con-
stored nodes with the cost higher tHafp) have the distance ~ sumption keeping also the time complexity ©fm-+C). The
d=0. tested algorithm modifications were:

1) A complete IFT algorithm with dequeuing and a fixed vol-

In the case 2b), which handles plateaus, neighboring nodes .
ume for queue (Section 4.2),

are “reinserted” with the cosE(v) unchanged but with the ) 4 . .
distanced incrementedd(p) = d(v) + 1). The nodes already Il) a complete IFT algorithm with dequeuing and a dynamical
stored in the queue with this path cost have associated two pos- ~ 4U€Ue (Sectl_on 4'3)_’ . . .

sible values of the distanaz The distance is either equal to ') @n IFT algorithm without dequeuing of the entries with a
d(v) (the node is waiting for processing at this level@ffv) higher path cost from the queue (Section 4.4), .
andd(v)) or the distance is equal th(v) + 1 (the neighboring IV) a modification w!thout dequeu_lng that stores all the costs in
node that has been processed at the current le@hofandd). the queue (Section 4.5), and finally _

Newly processed nodes are successively inserted after all node¥) @n improvement of the modification (IV) which saves the
with valuesC(v) andd(v) + 1. space necessary for the queue implementation (Section 4.6).
In the following subsections all five variants of the algorithm

If an implementation with buckets is used both the cases 2a) modifications will be explained

and 2b) represent inserting of the nodes in the end of the appro-
priate bucket. The principle of buckets is explained in Section 4.
4.1. Common and algorithm specific data structures

We have designed the data structures in all algorithm modifica-
tions with the aim of achieving a constant time complexity for
Falcao and Lotufbdid not discuss the implementation of the the queue modification. The constant time complexity is valid
algorithm in detail. They only noted the application of buckets for all queue operations except of searching for the first non-

4. Implementation of the IFT algorithm

for implementation of the priority queue similar to DiaBuck- empty bucket in the operatioQueueNotEmpty(which has a
ets can be used, as the maximal arc we@kt wmax( p, q) for a complexity ofO(C).

given input grey-scale volume is known—it is the maximal ab-  The following data structures are common to all presented
solute difference of voxel value€ & max f(p) — f(q)| for all implementations:

neighboring voxels)C is also calledvlaxDiff in the following

text and it is upper-bounded by the maximal value store-able
in the dataset. This maximal store-able value is in this paper
called a datasetrecision(Cp) and it is given by the 12-16 bit
representation of the numbeirsthe dataset.

e Input dataset-volume of scalar values of size=xx y x z,
stored with precisiol©p = 4096 or 65536, given by the 12-
to 16-bit number representation. The datasetrhascs (as
described in Section 2),

e two fixed arrays of pointerso the beginnings and ends of
They also proposed to spare the line 2cB in the IFT algo-  the buckets. The arrays have indices in raf@eC) where

rithm, which simplifies the data structure for priority queue im- C = MaxDiff is the maximal absolute difference of neighbor-

plementation but results in more elements stored in the priority  ing values in the dataset. As the upper bound for this num-
queue, as multiple entries for one voxel will appear inthe queue.  ber is given by the precisioBp of the the datasetylaxDiff



4 Felkel, Bruckschwaiger and Wegenkittl / Implementation of Watershed-from-Markers as a Minimal Cost Forest

NUMBER OF ELEMENTSINARRAYS _ FIXEDSIZE___ DYNAMIC SIZE

OF SIZEC,morRn C-TEMP __ n-TEMP__ nN-RESULT _____ n-,MTEMP
ALGORITHM ptr cost flag ptr label cost label position ptr index
Complete IFT, deQing, fix volume (1) 2 1 1 2 1 - - - - -
Complete IFT, deQing, dynam. Q (II) 2 - 1 1 1 1 - - 2 -
IFT no deQing, dynam. Q (lIl) 2 - 1 1 1 1 1 = 1 -
IFT no max test, dynam. Q (1V) 2 - 1 - 1 - (1) 1 1 -
IFT no max test, bricks (V) 2 - 1 - 1 - (1) 1 3 om
Size of one element [bits] 32 16 1 32 1 16 1) 28-31 32 8-16
Size of one element [Bytes] 4 2 ¥ 4 3 2 1or0 4 4 1-2

Table 1: Memory necessary for the algorithms (in number of elements in each array) without an input dataset. The horizontal line
separates the n- (upper part) and m- (lower part) size of the temporary volume. *Position for (lll) is computed indirectly from the
values of pointers. **Index and pointer sizes approximated for bricks of 256*4 Bytes—one ptr and 2 indices for brick of 254 elements

= O(Cp) and therefor&, can be directly used as the higher 4.2. Complete IFT with dequeuing and fixed volume for
index in the following sections if the maximal val@eis not queue (1)

available, ) o The complete IFT algorithm, as published by Lotufo and
* temporary volume of flagsone bit value that distinguishes 51044 s described in Section 3. To achieve the time complex-
TEMP and DONE status of each node in the volume. The i, ot o(m 1 C) the priority queue with buckets is implemented
flags are stored either in a separate bit-volume or together oq 5 gouple-linked list stored in the preallocated fixed volume
with the position as one bit from the 4-byte value, of the same size equal to the size of the dataset (see Figure 1,
e resulting volume of labels- one bit for each label, as only where four voxels are stored in bucket 0).
the object and the background are distinguished.

012 Cost C
The implementation specific data structures, which differ in the LT Bucket begin ptrs [ ]
modifications of IFT, are as follows: NN Bucket end ptrs [ [ ]
° Buclfets of elemenfesimpleme_nted asa fix_ed voIl_Jme or Qy- 7 Label
namically as double-linked lists, single-linked lists or lists . /"v)/
stored in structures called bricks, which will be described in : Cost
Section 4.6, i Flag
e temporary node costsin a fixed volume or as a part of a / TR Next-ptr
dynamically allocated bucket element, SN Fr A4 %
e node positions-stored implicitly as a position in a fixed vol- / N Prev'ptr
ume, explicitly as a set of coordinates, or even not stored. Az
An overview of sizes of the stored values is concentrated in Fixed volume Q element
Table 1 where for each algorithm the column headers represent
the size of the structure in numbers of eleme@ts{ or n)— Figure 1: Data structures for complete IFT algorithm with de-

the fixed size for static data structures or the maximal size for queuing and fixed volume for queue (1)
dynamic structures)—and the table entries represent the amount
of data stored in each element of these structures.
. This version uses all the operations described at the end of
For better understanding of the memory demands of the pre- gofion 3. Two arrays of pointers to both ends of the bucket-
sented algorithms Tables 2, 3 and 5 show the modification- FIFOs are used for a constant tireeQueueMin()and En-

specific representation in amounts of bits/bytes in different lev- Queue(p, cWwhile searching of the minimal element is done
els of substitution and conversion, taking into account the last in QueueNotEmpty(h O(C)

two lines of Table 1. Details are discussed in the explanations
of the algorithm modifications (I-V) in Sections 4.2-4.6 and
illustrated in Figures 1 to 5.

The double-linked list is necessary for a constant tDee
Queue(p¥or a nodep anywhere in the bucket queue; the com-
plete list is stored in the volume of the same size as the size of

The proposed data structures can handle 16-bit datasets ofthe dataset to have a constant time for tblmQueue(p)test
maximal sizes up to 1024 1024 x 2048 voxels. This upper and for a constant time location of the neighb@stNeigh-
limitis given by the storage of the tempordapel andposition bor(v, dir). Each list element has also an entry with a current
in one 32-bit element. On the other hand, the real limits for the temporary cosE(v) to achieve a constant tin@etCost(p)for
presented algorithms are the amount of RAM in a typical nowa- details see also the first line in Tables 1-3). The dDI{L)
days workstation and the largest possible dataset sizes presentlyime operation is the teQueueNotEmpty(Wwhich sequentially
available in the clinical praxis (about 5%¥512x 1024 voxels), searches the array of buckets for the first non-empty bucket.
i.e., the selected data structures form not the restrictive part of The complete search is performed once during the run of the
the algorithm implementation. algorithm.
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ALGORITHM MAXIMAL MEMORY CONSUMPTION O() IN TERMS OF(C,n,m)
FIXED TEMP FIXED RESULT  DYNAMIC TEMP
Complete IFT (1) (2C+2n) = ptr+n= (cost+flag)  + nxlabel +0
Complete IFT (11) (2C + 1n) = ptr+ n= (flag) +nxlabel + N (Cost+ 2 ptr)
IFT without dequeue (Ill)  (2C+ 1n) * ptr+ nx (flag) +n=xlabel + m= (cost+ label+ ptr)
IFT without max(IV) (2C ) * ptr+n= (flag) +n=xlabel + mx (label+ pos+ ptr)
IFT with bricks (V) (2C ) ptr+n«(flag) +nxlabel + M (label+ pos+ 54, * Ptr + 52, *ind)

Table 2: Memory necessary for the algorithms in the worst case (in multiplicand€,0f, m) and data type pieces). Underlined
label+pos are stored together, underlined label alone has to occupy a whole Byte. The fractional constant for ptr and ind is computed
for the brick size of 254 elements

ALGORITHM MAXIMAL MEMORY CONSUMPTION O() IN TERMS OF(C,n,m)
FIXED TEMP FIXED RESULT  DYNAMIC TEMP
Complete IFT (1) (2C+2n) x4+n%(2+ 3) +n*% +0
Complete IFT (II) (2C+1n) % 4+nx(3) +ns g +N%(24+2%4)
IFT without dequeue (l11) (20+1n)*4+n*(%) +n*% +mx(2+1+4)
IFT without max(IV) (2C  )*x4+nx*(5) + Nk 3 +mx(4+4)
IFT with bricks (V) (2C )*4+n*(§) +n*§ + Mk (44 ypg % 4+ 52, %2)

Table 3: Table 2 after substitution of data type representation sizes according to the last line of Table 1. Underlined numbers arise
from sharing of space (label+pos), allocation of the whole byte in the dynamical structures (label alone), or storage of indices in two
Bytes

4.3. Complete IFT with dequeuing and dynamical queue As no voxel is stored in the queue more than once the array
()} reserved for the resulting labels can be “reused” also for the

. . temporary labels the same way as in the complete algorithm (I).
In an average case of the algorithm, the number of elements S The set of operations and their complexities are equal to the

_multa_neously stored in th? queue s less than Fhe place .reservec*ixed volume version from the previous Section 4.2.
in a fixed volume ofn entries (this feature is discussed in de-
tail in Section 5.3). To reduce this extremely high fixed mem-
ory consumption a dynamical version of the priority queue was 4.4. IFT algorithm without dequeuing (l11)

proposed. Lotufo and Falcao described also a possible simplification of

the proposed algorithm. They propose to omit the dequeuing
012 Cost C of the nodes with a higher temporary cost from the priority
‘ queue during the node-cost replacing operation (line 2cB of
the complete IFT algorithm). This modification should simplify
the queue data structure, as the operaleQueue(pyploes not

DL 1] Bucket begin ptrs []

INER Bucket end ptrs 1]

Fixed volume Label need to be implemented.

Flag However, herewith the uniquity of the nodes in the queue is
‘ also lost, as the node (voxel) can be (and in many cases also

\1 Mr is) stored more times than once in the queue. Therefore more

R T KA different temporary costs and labels exist for one node at the
/ Cost same moment. It results in a repeated storage of the temporary

- Next-ptr costC(p) and temporary label in the queue within each queue
Prev-ptr entry. Multiple occurrences of the nodes in the queue are also

: common to both our modifications (described in Sections 4.5

Dynamic queue and 4.6).

But to preserve the constant time of the operaG@iNeigh-
bor(v, dir), which is used in the comparison in the max test in
line 2¢ of the IFT algorithm, a direct location of the neighbors
in the queue is still necessary. This demand violates the pre-
sumption proposed by Lotufo and Faléabat theDeQueue(p)

The queue is now stored in a dynamically allocated double- operation can be completely removed (more precisely, this op-
linked list, each element of this list contains the value of the eration can be removed but the speed of the algorithm is simul-
temporary cost(v) and two pointers for linking of the list (for ~ taneously lost when the element in the queue is searched, or the
details see the second line in Tables 1-3). As a direct accessvolume of current minimal temporary costs is still necessary to
to the elements in the queue is still needed, a fixed volume of be used, which needs memory and which still has to be contin-
pointers to the elements in the list (queue) is still necessary. uously updated)!

Figure 2: Data structures for complete IFT algorithm with de-
gueuing and dynamical queue (I1)
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The direct access of node neighbors can be achieved by han- 012 Cost C
dling of the volume of pointers to the elements in the queue;
same as in the previous algorithm (Il in Section 4.3). And

1] Bucket begin ptrs [ 1]

the operatiorDeQueue(pxan be only simplified to move the (L Bucket end ptrs [ T]
pointer to the element with a lower value@fp) without phys- Fixed volume
-label

ical removal of the previously pointed element (or to update the
current minimal cost in case of a fixed volume of temporary
costs). 1

T-Label

To summarize the memory demands (see also the third line ) W”% 7
of Tables 1-3): Bl

e Only one pointer in each queue element is now needed, as
the elements are not removed from the queue and the queue
is implemented as a single-linked list; but multiple entries of .
one node exist in the queue (double-entry example in Fig- Dynamlc queue
ure 4). Therefore, we store also the current cost and label in
the queue but also multiple times with each node.

e In the fixed part of the data structure only one pointer in the
fixed volume of pointers is saved (similar to (I1)).

Position
Next-ptr

Figure 4: Data structures for IFT algorithm with a dynamical
queue without dequeuing and without max test (IV)

As a disadvantage the maximum queue length simultane-
ously increases from®(n), as in modifications (I) and (), to

O(m). For illustration of the data structures see Figure 3. As a disadvantage, we also can have a maximur®(of)

elements in the queue. The exact number of elements in the

Cost queue is up to two times higher than in Section 4.4, as also the
012 C elements with a higher path cost will be stored somewhere in
T T Bucket begin ptrs [ 1] the end of the queue.

NN Bucket end ptrs [ [ ]

About one half of the memory is used for the pointers in the

Fixed volume R-Label dynamical implementation of the FIFO via a list (for details see
Fl also the fourth line of Tables 2 or 3, the column Dynamic temp).
ag
¥ 1 M 4.6. IFT without dequeuing and without a max test with
=B A7 bricks (V
/ Cost v
- T-Label Cost
N 012 C
ext-ptr [T Bucket begin ptrs 1]
Dynamic queue LTI Bucket end ptrs [ 1]
Figure 3: Data structures for IFT algorithm without dequeuing Fixed volume R-label
(i) i)
\‘ = A4 Y
A =
4.5. IFT without dequeuing and without a max test (V) AR |-Dr Latt_)el
iton
To save even the memory of the fixed volume of pointers an- FL N Igsl;_ l\ol
other modification of the IFT algorithm without dequeuing of LT R T == ( )y )
elements is proposed in this paper where not only the dequeu- D . brick
ing is omitted but also the maximum test (in line 2c). Simply, ynamic queue bric

ALL nodes (their label and position) are stored according to
the new values of the temporary path cost into the appropriate
bucket in the priority queue where each bucket is implemented
as a single-linked list. The cost is NOT stored in the queue—
this information is intrinsic to each bucket, as it is the index
in the bucket-begin- and bucket-end-pointer arrays (for details  To save the memory used for pointers in the dynamical list in
see Figure 4 and the fourth line of Table 1). As the FIFO returns (1V), an allocation of memory in larger amounts was proposed
(dequeues) the elements with lowest cost first and the algorithm —they are callethricks(see Figure 5, where the bucket “0” con-
ignores the multiple entries after setting of the flag to DONE, tains one brick with five entries, where two of them point to the
the modified algorithm gives exactly the same results as the al- same voxel). Each brick has one pointer to the next brick and
ready discussed variants (1)—(Ill). Take note of a reverse direc- two local indices for the first and the last (next free position
tion of pointing from the queue elements into the volume (via behind the last) elements of the queue part stored in this brick
position) and also a double-entry example in Figure 4. The vol- (marked by F and L in Figure 5). 8-bit indices, allow the brick
ume now contains only the resulting label (R-label) and a flag, size (number of node entries stored in one brick) of max 256 el-
the temporary label and position are stored in the dynamically ements. The common memory allocation scheme of multiples
allocated queue elements. of 8 bytes (#pragma pack in VC+4#Jnay prefer 254 entries,

Figure 5: Data structures for IFT algorithm without dequeuing
and without max test with bricks (V)
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DATASET NUMBER OF ARC COSTS ARC/NODE
No SIZEXxYxZ NODESN ARCSM MAX  MEAN  SDEV RATIO
128x 128x 79 1294 336 3 846 400 4095 50.40 152.05 2,972
256x 256x 48 3145728 9347072 568 9.98  20.82 2971
255x 255x 81 5267025 15694 740 3921 26.18 68.46 2.980

256x 256x 444 28 097 984 87 001 088 1627 23.81 78.60 2.990
512x 512x 125 32 768 000 97 913 856 4095 24.27 80.57 2,988
512x 512x 169 44302 336 132471808 1483 23.00 50.25 2.990

OO hAWNPE

Table 4: Characteristics of medical datasets used in the study

as 6-8 bytes are used for indices and a pointer to next brick (to- and 31 bits are left for the position. Higher dataset sizes or more
gether 256« 8 Bytes. For details see the fifth line of Tables 1-3, than one label value cause an increase in memory complexity,
the column Dynamic temp). as the label has to allocate a separate byte.

To save the memory allocation times an empty brick manage-  As already noted in Section 4.1, precisiop of the 12-16-
ment, which collects empty bricks in a separate “empty-brick” it datasets gives an upper bound for the maximal differénce

stack, is used. That means a fixed size of a bucket pointer array of 4 096—
65 536 pairs of bucket pointers can be used if the maximal dif-
5. Tests ference of values in the dataset were not directly available and

had to be computed (in an additional computational Ggst)).
Studies of computational and memory complexity exist for the This roughly approximated array of bucket pointers occupies
shortest path forest problem, e.g., in general case by Ahuja etabout 0.5MB of memory, nevertheless this amount of memory
al# and for the real road networks by ZR®aThe presented in comparison to the whole memory demands of the algorithm
study is related to the large medical volumetric datasets, where is in practical terms inconsiderable.
also the different shortest path cost function is used (not sum, . . )
but maximum on the path, see Sections 2 and 5.2). Zhar? draw the g_ttentlon to _dlfferent types of_graphs_ for dif-

ferent tasks, classified accordingai@-to-node ratigas this pa-

Five modifications of the IFT based watershed algorithm rameter directly implies the complexity of the algorithm. Zhan

were discussed with segmentation of large 3D medical datasetsa|so warns that the measurements of the performance of the
in mind. This section discusses the estimations of asymptotic shortest-path algorithms have been done on artificial networks
computational and memory complexities being made. The real with arc-to-node ratio up to ten, where the real road network
case measurements on the 3D medical imaging datasets foIIow.graphs achieve the value of only approximately three.

Properties of our typical volumetric medical datasets are  The arc-to-node ratio(m/n) is almost equal to three for a
characterized in Section 5.1. Memory and computational anal- y,olumetric graph, because most of the nodes belong to the inner
ysis of the worst and average case for each algorithm follow \gxels with six neighbors and each arc is processed only once.
on in Sections 5.2 and 5.3. Results of tests are summarized in orc-to-node ratio of medical datasets used for tests is listed in

Section 5.4. the last column Table 4.

For real road networks, one of the fastest algorithms was the
Dijkstra’s algorithm implemented with appropriate buckets. As
The type of the dataset (its size and precision of stored values) the volumetric datasets have the equal arc-to-node ratio, it can
is important for the algorithm implementation, as it determines be deduced that the concentration of the work on a good imple-
the memory demands for temporary data structures, e.g., thementation of the Dijkstra’s algorithm with buckets was a good
representation of stored costs and data structures for the priority choice.
gueue, as discussed in Section 4.

5.1. Datasets

The implementation of IFT algorithm ht_s\s been tested and 5.2. The worst case analysis
tuned on the 3D datasets (volumes) acquired by the computer
tomography (CT) and the magnetic resonance imaging (MRI). All presented modifications of the algorithm have the same
The size of these data volumesrix r x S, where inter-slice O(m+ C) time complexitythey differ in the constant factor
resolutionr varies from 128 to 512 and the number of sli®@s  in the average and maximal running times and in the maximal
varies from 48 to 444. Characteristics of medical datasets usedmemory complexity.
for tests $UCh as maximal, mean and standard deviation O.f the As stated in Section 2, the path cost is for the watershed algo-
arcs are listed in Table 4. The datasets are ordered according to . ) . )
) rithm computed by the IFT defined as theaximal arc weight
the number of nodes. The example images of three of them are. u o . .
in Fiqure 6 in the path. The “classical” shortest path forest algorithms (dis-
g ' cussed by Ahufaor Zhar?) use a different definition of the
The practical maximal size of dataset the algorithm can han- path cost as theumof the arc weights in the path. The “clas-
dle is given by the operation memory of PC’s at the present sical” variants therefore needruns through the queue in the
time limited to about 1GB, i.e., about 512—680 slices (512 to worst case and reach time complexity@fm+ nf(C)) — with
omit swapping, which occurs if about 75% memory is used). the multiplicative terrm. The IFT-WS by Lotufo et al.needs
Nevertheless, the proposed data structures allow to use datasetenly one complete run and the time complexity is simplified to
up to 1024x 1024x 2048 slices, as they use one bit for the label O(m+C).
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3 2

Figure 6: Examples of the datasets used in tests. Top row shows a windowed view of input datasets, bottom row segmented structures.
Numbers are according to Table 4. (Datasets with courtesy of TIANI Medgraph GmbH, Austria)

The worst casenemory complexitpf presented algorithm

modifications varies fron®(n) to O(m): Max MEMORY O() = f(C,n,m) RELATIVE
ALG FIXED PART DYNAMICAL QLEN

e The algorithm variantsvith dequeuing(the complete IFT FOR ALL DIFF PART [%]
with a fixed volume () and the complete IFT with dynamical
gueue (I1)) have a fixed size of the supporting data structures | 8C+ %n 10n — 100%
of O(n+C) and a fixed or maximal size for the queQén). Il 8C+ zn 4n 1 60%
Therefore memory consumption @{n+C). 1 8C+in 4n Tm= 21n 29%

e The variantsvithout dequeuinglFT without dequeuing (l11), \Vi 8C+ in _ 8m=~ 24n 42%
IFT without dequeuing without the max test (IV) and IFT \Vi 8C+ 411” —  4.0314m%121n 82%

without dequeuing without the max test and with bricks (V))

have all the fixed size of the supporting data structures of Tapje 5: Table 3 after conversion in multiplicands of bytes. The
O(n+C) and, as the elements are not dequeued, the maximal |ast column shows the maximal amount of elements that can
size for the queue dd(m). Therefore memory consumption  pe processed in the same memory as used by the complete IFT
of O(m+n+C) = O(m+C). algorithm with the queue in the fixed volume (I). (Algorithm
Table 5 shows the maximal (worst case) memory sizes of (I, Il) in percents of n, (Ill-V) in percents of ra 3n)

five tested algorithms (I-V) in multiples &, n andm after all

substitutions and conversions. These maximal sizes are reached

only in a special case of input markers set in a chessboard pat- ) )

tern, which cause planning of all arcs simultaneously into the for medical datasets not so good (more precisely, a better way

queue. In real situations, the dynamical part depends on the real®f its implementation is not known to the authors of this pa-

queue lengtm’ or n', which is smaller tham or n. per)._ Omitting theDeQueue(ppperation with 'survwal of the

maximum test allow only 29% of arcs stored in the queue to be

Before testing the algorithms, a comparison of the maxi- handled in the same amount of memory as (1) (Table 5). Or, to

mal number of elements the algorithms can handle in the same save memory, the volume of pointers used for the direct access

amount of memory as the complete IFT algorithm (1) was per- of the queue elements in the max test can be also omitted but it
formed (see the last column of Table 5). For instance, the variant you|d slow down the algorithm.

with bricks (V) can handle up to 82% of the elements stored in
the queue (of length abouhB The comparison is based on the

premise that the queues will be filled similarly in all variants 5.3. Average case complexity analysis for medical datasets
(I-V), which must not be true, as the storage strategies differ.

Six volumetric medical datasets were tested and measured. The
It is possible to see, that the Lotufo and Falcaadea for tests were designed to verify the derived time and memory com-
the data structures simplification by omitting the dequeuing is plexities, the average filling of the queue and, for the last modi-
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DS AL _____ _FIXTEMP___ DYNAM DYNAMIC USED BY ELEMENTS __ SUM MEMORY _____ MEM
No No 8C 1/4n VoL MAX  NOELEMS  FILLING MEM  MAX USED OF
[MB] [MB] [MB] [MB] (M orn') [%OFQ] [MB]  [MB] [MB] [%MAX] | [%]
1 | 0.5 0.3 12.34 - 181243 14.0% - 13.2 13.2 100% 100%
I 0.5 0.3 4.94 12.3 181243 14.0% 1.7 18.1 7.5 41% 57%
1 0.5 0.3 4.94 259 558862 14.5% 3.7 31.7 9.5 30% 72%
\% 0.5 0.3 - 29.6 1029308 26.8% 7.9 30.4 8.7 28% 66%
\% 0.5 0.3 - 14.9 1029308 26.8% 4.9 15.7 5.6 30% 42%
2 | 0.5 0.8 30.00 - 1073959 34.1% - 31.3 31.3 100% 100%
Il 0.5 0.8 12.00 30.0 1073959 34.1% 10.2 43.3 235 54% 75%
1 0.5 0.8 12.00 63.0 1562900 16.7% 10.4 76.3 23.7 31% 76%
1\ 0.5 0.8 - 72.0 2503049 26.8% 19.1 73.3 20.3 28% 65%
\% 0.5 0.8 - 36.3 2503049 26.8% 9.9 37.6 111 29% 36%
3 | 0.5 1.3 50.23 - 757 453  14.4% - 52.0 52.0 100% 100%
Il 0.5 1.3 20.09 50.2 757 453  14.4% 7.2 72.1 29.1 40% 56%
1l 0.5 1.3 20.09 105.5 2629578 16.8% 176 127.3 39.4 31% 76%
1\ 0.5 1.3 - 120.6 4641552 29.6% 354 1223 37.2 30% 71%
\% 0.5 1.3 - 60.8 4641552 29.6% 187 62.5 20.5 31% 40%
4 | 0.5 6.9 277.50 - - - — 2849 2849 100%100%
\% 0.5 6.9 - 3358 11735946 13.5% 454 343.2 52.8 15% 19%
5 | 0.5 7.8 312.50 - - - - 320.8 320.8 100%100%
\% 0.5 7.8 - 378.1 26530954 27.1% 102.7 386.4 111.0 29% 35%
6 | 0.5 10.6 422.50 — - - — 433.6 433.6 100%4.00%
\% 0.5 10.6 - 5112 47513276 359% 1819 5223 193.0 37% 45%

Table 6: Measurements of memory consumption for 3D medical datasets. Values for measurements on datasets number 4—6 that did

not fit into memory of our implementation were omitted (the queue length for algorithm (I) and complete lines for (11-1V))

fication, also the average brick fill to check the suitability of the
selected brick size. In all cas&s= MaxDiff was used, as this
value was directly available for each dataset.

At first a test-bed implementation of all algorithms was done
by means of general container libraryfThe tests showed that
the memory consumption of algorithms (I-1V) was too high

ant (V) can handle all the cases with a large reserve in the same
amount of memory as (l) but the variant (lll) can not.

More interesting is the comparison of memory usage for the
algorithm modifications, concentrated in the second bold col-
umn in Table 6. It is possible to see, e.g., that the algorithm
variant that stores all arcs in the queue and performs no com-

for the 3D medical datasets and also that the dynamical spaceParisons of previously stored costs (V) needs only about 19 to
management consumes too much processor power (up to 10-45% of the memory of the reference complete implementation
times slower in our test implementation). After these prelimi- With a fixed volume (I). This is the best implemented modifica-

nary tests, the last variant (V) was carefully implemented with
the specifically-designed data structures.

Therefore the computational times were measured only for
the last implementation of the IFT algorithm (V) and they are

collected for the presented 3D medical datasets in the last col-

umn of Table 7. The linear time complexity is from these num-
bers obvious.

The memory consumption was measured for all variants (I—
V). As mentioned in Section 5.2, the extreme situation (maxi-
mum memory consumption) when the maximunmoélements

tion.

The amount of elements in the queue and therefore the whole
memory depend substantially on the segmented structure, given
markers and the character of the dataset. It seems that small
homogeneous structures in a homogeneous background need a
lower amount of elements simultaneously in the queue (Dataset
No. 4 with 13.5% of elements) but up to now the exact correla-
tion between these parameters and the average queue fill have
not been found. This is a topic for a further research.

The last test was designed to find the average brick fill for the
bricks with the selected size of 254 elements. For the version

simultaneously stored in the queue were reached is practically \yith pricks (V), the largest amount of bricks is used in such a

impossible for real cases of the volumetric datasets with manu-
ally set markers.

In the real situation, when the user puts markers in the 3D
volume and starts the algorithm, the memory consumption of all
the modifications (II-V) is less than the needs of complete IFT
(). The first bold column in Table 6 shows the relative queue
fill reached in our tests, which varies from 14 to 34% for vari-
ants (I, II) to 26 to 36% for variant (V). A comparison of these
values with the last column of Table 5 shows that the last vari-

case when all buckets contain a brick with one element and the
rest is more or less full. But this situation changes the memory
demands in amount of ones of percent for large datasets and
therefore can be omitted in the tests. Results of the tests are
collected in Table 7. The brick fill is typically betweérand 1,
which means that the brick size is relatively optimal and the size
of brick was chosen correctly.

Final note: To be exact it has to be mentioned that the mem-
ory used by a compiler for handling of the dynamical memory
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DS NUMBER OF AVERAGE COMPUT

NO ELEMSINQ BRICKS BRICKSIZE TIME
1 1029 308 4970 205.8 2.3
2 2503049 10126 245.5 6.0
3 4641552 19174 242.1 10.1
4 11735946 46502 252.4 51.6
5 26530954 105184 252.2 67.8
6 47513276 186232 253.1 108.2

Table 7: Tests of the brick filling for all datasets in the study
(Continuing of Table 4 for algorithm (V)). Number of bricks is
herewith equal to amount of memory used for bricks in [kB].
The last column shows the computatonal time for (V)

(in the compiler documentatidralled the “maintenance cost”)
was not taken into consideration.

5.4. Summary of tests results

The complete IFT algorithm implemented with a fixed vol-
ume (1) served as a reference for comparison of the algorithms.
It uses a fixed amount of memory, which is given by number of
voxels in the dataset.

The dynamical version of the complete algorithm (ll) uses

Felkel, Bruckschwaiger and Wegenkittl / Implementation of Watershed-from-Markers as a Minimal Cost Forest

The best implementation variant allows segmentation of
datasets up to sizes of 10241024 x 2048 voxels but the
memory of currently available medical workstations based on
PC technology allows a segmentation of significantly smaller
datasets of sizes up to 5¥512x 512-680 voxels.

An interesting area for the future work is finding correla-
tions between dataset parameters (such as that in Table 4) and
the number and the character of input markers to the maximal
queue length. If this correlation exists, it can be used for pre-
diction of the overall memory consumption of the segmentation
algorithm.

A modification of arc-weights in an interslice directinoan
also be tested on the basis of the presumtion that if the sam-
pling distance inz-direction is higher, then also the absolute
difference is higher and therefore the flow in the 2D slice may
be preferred over jumping to the neighboring slice.

Another interesting area is an application of hierarchical
techniques for speeding up the watershed algorithm itself and
the overall user interaction. At present, a combination of 2D
and 3D watersheds has been tested, where the complete results
of 2D watersheds have been used as markers for 3D watershed.
This combination has given promising results.

The presented algorithm should be also further validated in a
clinical praxis.

about 56—75% of the memory of (I). Even that it does replac- Acknowledgments

ing of the elements in the queue and therefore also stores eac
node in the queue maximally once. Handling of the dynamical
variables results in slower computational times (up to 10-times
slower in our test-bed implementation).

By omitting of the node replacing (line 2cB/C), as proposed
Lotufo and Falcab(lll), the implementation saves less memory
then (I1), as omitting of dequeuing causes multiple node entries

in the queue and these entries need a relatively large amount of
memory for storage. This variant needs in an average case about

72—-76% of the memory of (1).

Not much better is the first max-test simplification (IV),
which saves the fixed part of the temporary memory (pointers
to the queue elements) by omitting of the comparison in the
line 2c. The saved memory is nearly all used by the multiple
entries of nodes with a higher cost. The average memory con-
sumption is about 65—-71% of the memory of (I).

Significantly (two times) better in the worst case and even
the best implementation in average case for real 3D medical
datasets is the second max-test simplification with bricks (V).
It also saves the fixed part of the temporary memory but, by
better memory allocation in larger amounts, it can handle up to
80% of the maximal queue length in the same amount of the
memory of (1) and in an average case needs only 19-45% of the
memory of (1).

6. Conclusions and future work

The paper presents five variations of the Iterative Forest Trans-
form (IFT) algorithm implemented with the aim of performing

segmentation by watershed from markers for large 3D medical 7-

datasets in a limited amount of operational memory.

An optimization of the memory consumption was performed 8.
and the best algorithm variant needs in an average case about

19-45% of memory of the complete IFT algorithm imple-
mented according to Lotufo and Falcao.
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