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Abstract 
A fully-automatic approach to volume registration based on global information content is described. In a nutshell this task 
represents an optimization problem that has been solved with respect to robustness and computational speed especially. 
Strong attention has been paid to the choice of an optimized function that measure the quality of the registration (Mutual 
Information), to the choice of an optimization strategy that searches for a global optimum of the function in a parametric 
space (Adaptive Simulated Annealing), and to the efficient way of registration procedure implementation that includes 
region-of-interest segmentation, multi-resolution strategy and an incremental approach to volume resampling. 

 
 
 
 
1. Introduction 
 
Nowadays, patients are frequently investigated by more than 
one tomographic medical imaging modality for the purposes 
of diagnosis or therapy planning. It is not sufficient to 
consider soft tissue anatomy (provided by MR – Magnetic 
Resonance), bones morphology (CT – Computed 
Tomography) or functional information (SPECT or PET – 
Single Photon Emission or Positron Emission Tomography) in 
separate 3-D data sets. To exploit the benefit of their unique 
clinical information, it is useful to fuse them and visualize the 
complex information in single image. For the sake of different 
resolutions and objects orientation, to accomplish this 
complex image, volume registration is used to transform the 
data sets into a common coordinate frame. 
 

A variety of approaches to the volume registration 
problem has been published until now. Good surveys were 
given by [Brown92] and [Maint98]. In order to make the 
physicians’ work easier, attention is paid to fully-automatic 
methods for volume registration especially. There are two 
main approaches to this problem. 
 

The first group represents feature-based methods which 
rely on pre-segmentation of specific features1 or markers2 in 
data sets and the matching of these features. However, 
automatic pre-segmentation of the features is a difficult task 
that can be solved successfully only if the features are well-
defined. This is valid, for example, if artificial markers are 
firmly fixed with regard to the patient’s anatomy, e.g. by 
implant markers, which is however very uncomfortable for a 
patient. 
 

In order to avoid invasive intervention into the patient’s 
body, a solid frame containing markers fixed firmly onto a 
patient can be used. Afterwards, a fully-automatic registration 
is done according to these markers2. The main advantages of 
such an approach are relatively low computational demands 
and high accuracy of the registration. However, the limitation 

represents the necessity of using an additional equipment – in 
this case the frame with markers. 
 
 The second group of methods is often called voxel-based3, 
since they use directly the gray-level information carried by the 
voxels without segmentation of features. Therefore, these 
methods are more general and straightforward to apply. 
Practically, these methods always pose a kind of an 
optimization problem: having a criterion of registration quality, 
one has to find its global optimum in a pre-defined parametric 
space of geometrical transformations. In this paper, the 
registration aligns 3-D data sets of the head by using rigid body 
transformations with six degrees of freedom (three translations 
and three rotations). 
 
 In the case of multi-modality data sets the criterion must 
cope with non-linear dependencies of intensities of voxel pairs. 
The most popular criteria used at present days are derived from 
the information-theoretic approach, namely mutual 
information3, or statistics, e.g. an algorithm published by 
Woods et al.4. In this paper we investigate different methods of 
their implementation and compare them regarding their 
computational demands and their suitability for a global 
optimization procedure. 
 

Some optimization procedures are also studied, since they 
differ by their capability to find the global optimum in a 
parametric space often hidden among local optima and by 
speed of their convergence to the global optimum. The best 
optimizer requires the lowest number of evaluations of the 
optimized function and is robust with respect to local minima. 
 

The main advantage of the voxel-based methods is their 
generality with regard to data sets and the fact that no user 
interaction is required during the registration. This is paid 
especially by a higher computational complexity. The  
computationally most expensive part is the recomputation of 
large 3-D data sets during optimization. To beat this  problem 
particularly multi-resolution strategies are incorporated. The 
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used multi-resolution approach speeds up the registration 
process dramatically without the loss of accuracy. 
 

Another way to acceleration of the registration procedure 
is pre-segmentation of data sets in order to avoid information 
of void voxels (background) to be used during optimization. 
This pre-segmentation is done fully-automatically by 
thresholding before the registration process starts. 
 

The last technique that speeds up calculations is an 
innovative method of volume resampling. Commonly, if a 
volume data set is re-calculated according to a  geometrical 
transformation, the position of every new voxel is computed 
by using a general 3D transformation matrix. This requires a 
lot of time-consuming floating point calculations. The 
presented method hinges on computations of only four such 
voxels. Then incremental vectors along three axis of a volume 
are computed and the new volume is calculated only by 
summation of these vectors. Moreover, during the resampling 
the realigned volume is traversed using integer arithmetic 
allowing to apply fast bit processor instructions. 
  

The registration was tested on standard multi-modality 
data sets provided by Vanderbilt university, USA5. 
 
 
2. Data 
 
To show the functionality of the developed registration 
method, standard inter-subject data sets of two modalities – 
CT and MR – are used. These data sets are provided in the 
framework of “The Retrospective Registration Evaluation 
Project“ hold by J. Michael Fitzpatrick from Vanderbilt 
University, Nashville, TN, USA5. The project is designed to 
compare retrospective CT-MR and PET-MR registration 
techniques. It gives possibility to use an FTP database to 
allow the downloading of multimodal volumes on which 
registrations can be performed. 
 
 In this paper we focus on CT-MR registration. CT data 
sets (Figure 1) have resolution of 512 x 512 x 28 voxels, every 
voxel having the size 0.653595 x 0.653595 x 4.00 mm3. MR 
data sets (Figure 2) are of 256 x 256 x 26 resolution with 1.25 
x 1.25 x 4.00 mm3 voxel size. Every voxel is expressed by a 
signed integer digit (32 bits). Please, note that although both 
the figures describe a slice through the same head, 
dependencies in gray-level information carried by the slices 
are non-linear; for example, white bones in CT correspond to 
black bones in MR. 
 
 
3. Methods and results 
 
The voxel-based registration methods consist of two main 
parts: of a criterion of registration quality – it can be called 
„similarity measure“, since, in fact, it measures the similarity 
of two data sets – and of an optimization strategy that searches 
for the global optimum of the similarity measure in a 
predefined parametric space. The following sections give a 
detailed explanation of these two parts together with some 
remarks to their implementation. 
 
 

 

 

Figure  1: Example of CT slice. 

 
 

 

 

Figure  2: Example of MR slice. 

 
 
3.1. Similarity measures 
 
The most popular similarity measures used in medical volume 
registration are the ones derived from the information-theoretic 
approach or from statistics. The reason is that these criteria are 
able to handle nonlinear information relations between data 
sets. The most promising, namely an algorithm by Woods et 
al.4 (WOODS), mutual information3 (MI) and generalized 
mutual information6 (GMI) will be discussed in more details. 
In case of mutual information two different algorithms of its 
evaluation were tested. 
 
 
3.1.1. Woods’s algorithm (WOODS) 
 
Before the value of WOODS can be calculated, a 2D mutual 
histogram g(a,b) according to Figure 3 is constructed – a and b 
represent gray values of the volumes u and v, respectively. 
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Figure  3: Construction of the mutual histogram of two 
images (the same process is valid for 3D volumes). 

 
As a matter of fact, the value of WOODS represents a 

weighted sum of normalized standard deviations of gray 
values of voxels in the overlapped part of two volumes. The 
value of WOODS is obtained by the following formulas: 
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is the resulting value. 
 
 
3.1.2. Mutual information (MI) 
 
Mutual information of two volumes u and v is defined in 
terms of entropy in the following way: 
 

( ) ( ) ( ) ( )vuhvhuhvuMI ,, −+= , 
 
where ( ).h  is the Shannon entropy of a random variable and is 
defined as  
 

( ) ( ) ( )∫−= dxxpxpxh ln , 

 
while the joint entropy of two random variables x and y is 
 

( ) ( ) ( )∫−= dxdyyxpyxpyxh ,ln,, , 

where p stands for probability of a random variable. 
 
For practical evaluation mutual information can be re-

written into probabilities calculated with the help of the mutual 
histogram (Figure 3). Then the value of mutual information is 
obtained according to Maes et al.3: 
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According to Fraser7, in case of small data sets, the mutual 

histogram becomes a sparse matrix and MI is undervaluated. 
Therefore, he proposed a recursive algorithm that splits the 
histogram into small sub-areas having approximately the same 
number of incremental contributions, and the value of MI is 
computed through weighted evaluations of these sub-areas. 
 

Fraser’s algorithm was optimized by Weeks8. For fast 
calculation of MI of small data sets he applied a method based 
on sorting 2D arrays. 
 
 
3.1.3. Generalized mutual information (GMI) 
 
GMI is defined similarly to MI, but the Shannon entropies are 
replaced by the Renyi entropies6 of the second order. 
According to the theory, this makes GMI more general and 
robust when compared with MI. 
 

( ) ( ) ( ) ( )vuhvhuhvuGMI ,, )2()2()2( −+= , 
 
where 
 

( ) ( )∫−= dxxpxh 2)2( , 

( ) ( )∫−= dxdyyxpyxh ,, 2)2( . 

 
 Practical implementation of GMI, like Weeks’s 
implementation of MI, is based on sorting 2D arrays6. 
 

The above criteria have been tested with regard to their 
properties like smoothness, robustness, behavior in the vicinity 
of their global extreme and computational demand. The tests 
were accomplished by shifting two similar but not identical 
biomedical 3D images in the vicinity of their known registered 
position along x and y axes, i.e. in the vicinity of the global 
extreme of a similarity measure. The global extreme of the 
measure should be well-expressed in order to be easily 
localized in a parametric space by an optimization strategy. 
Moreover, it should have a smooth shape not disturbed by local 
extremes in which the optimization process could be 
undesirably trapped. 
 

The quality of the measures in the vicinity of the global 
extreme is characterized by a parameter that we named AFA 
(Area of Function Attraction). It evaluates the range of 
convergence of a measure (expressed in voxels) to its global 
extreme. AFA counts the number of voxels from which the 
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global extreme is reached by applying a direct gradient 
method, i.e. downhill climbing according to a discrete 
gradient computed in every point of the parametric space. The 
higher the AFA, the better expressed and smoother the global 
extreme of the criterion. 

 
The characteristic shapes of global extremes of the 

measures depicted in 2D plots are shown in Figures 4-7. The 
descriptions of these plots are accompanied by their 
corresponding AFA values. WOODS (Figure 4) has a sharp 
global extreme and, therefore, AFA is low. Generalized 
mutual information (Figure 7) has the value of AFA higher. 
MI according to Fraser & Weeks (Figure 6) has a sharp global 
extreme that is, moreover, masked by local ones. Hence, its 
AFA is low. MI computed according to Maes (Figure 5) has 
its global extreme well-expressed, broad and smooth and, 
thus, the value of AFA is the highest from the collection of the 
tested similarity measures. 
 

The next test focuses on computational demands of the 
criteria. From the point of view of fast optimization the  
calculation of one value of the measure should be as fast as 
possible. 

 

As mentioned above both MI according to Fraser & Weeks 
and GMI are computed by sorting 2D arrays which represent 
the input volumes. In other words, the computational time 
depends on their size, which is disadvantageous especially in 
case of large volumes. The computation times of one value of 
the criteria are shown in Table 1 (for simplicity for 2D case 
only). From the table follows that MI (Fraser & Weeks) is 
slightly faster than GMI, but the computational time of both 
the criteria is practically exponentially dependent on the size of 
evaluated data sets.  
 
 

Image size MI (Fraser & Weeks) GMI 
128 x 128 0,091 [s] 0,317 [s] 
256 x 256 0,475 [s] 1,130 [s] 
512 x 512 3,118 [s] 4,451 [s] 

1024 x 1024 16,481 [s] 18,319 [s] 

 

Table 1: Times of the criteria computation for 2D images of 
different sizes (Pentium III, 600 MHz, 512 MB RAM). 

 

 
 
 

 

  
 
 

 
 

Figure  4: WOODS, AFA = 390. 
 
 

  
Figure  5: MI (Maes), AFA = 6233. 

 
 

 

 

 
 

Figure  6: MI (Fraser & Weeks), AFA 250. 
  

Figure  7: GMI, AFA = 868. 
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WOODS algorithm and MI according to Maes are 
calculated by a normalization of the 2D histogram. This means 
that after the histogram is filled in by values, the calculation of 
these criteria is independent of the size of the volumes. 
However, the computation demands depend on the size of the 
histogram, i.e. the number of histogram bins. These demands 
are illustrated in Table 2. It can be seen that MI (Maes) is 
faster than WOODS, and by applying lower number of 
histogram bins (e.g. 128) one can save further the 
computational time (e.g. about three times with respect to the 
full number of histogram bins, i.e. 256). 
 
 

Histogram size WOODS MI (Maes) 
64 x 64  0,019 [s] 0,012 [s] 

128 x 128 0,031 [s] 0,021 [s] 
256 x 256 0,134 [s] 0,062 [s] 

 

Table 2: Times of the criteria computation for histograms of 
different sizes (Pentium III, 600 MHz, 512 MB RAM). 

 
Considering the time requirements the criteria based on 2D 

histogram are more suitable for volume registration than the 
criteria based on sorting 2D arrays. From the histogram-based 
criteria MI according to Maes is the optimal choice, since it 
has a clear expressed global extreme. Therefore, it is easier to 
find it in a parametric space when compared with the extreme 
of WOODS (see Table 4). In order to preserve low 
computation demands it is advantageous for MI (Maes) 
calculation to apply the histogram having a size of about 150 x 
150. Practical experiments confirm that this restriction does 
not decrease the accuracy of registration (see below). 
 
 
3.2. Optimization strategies 
 
An optimal optimization strategy should converge to the 
global extreme of an optimized function. This means that it 
should be robust regarding the presence of local extremes in a 
parametric space. Moreover, it should be fast, i.e. it should 
require only a small number of evaluations of the optimized 
function during the optimization process. 
 

In this paper a set of optimization strategies including 
genetic algorithm9, Powel‘s method10, downhill simplex 
method (amoeba)10 and adaptive simulated annealing11 (ASA) 
has been tested. Table 3 summarizes briefly the results of the 
practical experiments. 

 
 

genetic 
algorithm 

amoeba Powell’s 
method 

ASA 

slow, 
possible 

convergences 
to local 

extremes 

fast, 
frequent 

convergences to 
local extremes 

fast, 
frequent 

convergences 
to local 

extremes 

fast, 
possible 

convergences 
to local 

extremes 

 

Table 3: Behavior of different optimization methods. 

 
The genetic algorithm is a relatively robust strategy, 

however, its convergence to the global extreme is slow and it 
requires many evaluations of the optimized function to reach 
the extreme. Amoeba and Powell’s method are faster 
optimizers, i.e. they require less evaluations of the optimized 

function when compared with the genetic algorithm, but they 
frequently terminate in local extremes. ASA is fast too and is 
more robust, i.e. it finds the global extreme with higher 
probability than amoeba or Powell’s method, but still it 
converges from time to time to local extremes. 

 
In order to show their effectiveness, amoeba, Powell’s 

method and ASA were implemented in a stochastic manner. It 
means that every optimizer was multiply restarted from 
randomly selected positions of its starting point in a parametric 
space. 

 
The stochastic implementation of the optimizers was 

evaluated by registration of identical volumes and by counting 
the number of successful registration results of all restarts (30 
in this concrete test). Relative preciseness of all the strategies 
was set to 1.0E-7, i.e. the strategy terminated if the difference 
of the two last values of the applied measure is smaller than 
this number. Results are shown in Table 4 in percentages of 
successful results of all restarts. In the brackets relative 
numbers of evaluations of an optimized function during the 
optimization related to the value of stochastic ASA are given, 
e.g. stochastic Powell’s method is by factor 1,60 (for MI) 
slower than stochastic ASA. 

 
In order to demonstrate the importance of the shape of the 

global optimum of criteria, results of optimization of both 
WOODS and MI (Maes) are presented. Percentages confirm 
higher probability of finding the global extreme of MI (Maes) 
than of WOODS (see comments about AFA above). 

 
 

 stochastic 
amoeba 

stochastic 
Powell’s 
method 

stochastic ASA 

MI (Maes) ~ 41% (0,73) ~ 24% (1,60)  ~ 70% (1,00) 
WOODS ~ 7% (0,55) ~ 13% (1,39) ~ 54% (1,00) 

 

Table 4: Effectiveness of stochastic optimizers  
(in percentages) applied to the histogram-based criteria  

(see text). 

 

Table 4 illustrates that the most suitable optimizer in our 
test is stochastic ASA – it is able to find the global extremes of 
the given criteria with the highest probabilities,  70% or 54%, 
respectively. Therefore, according to these results, we apply 
ASA to optimization of MI (Maes). 

 
 In practice it turned out that one start of the optimization 
strategy is sufficient, since objects in medical data sets have 
approximately the same position (in the middle). But the 
above mentioned experiment with the stochastic 
implementation of the optimizers demonstrates well the 
suitability of different optimization strategies for volume 
registration. 
 
 
3.3. Remarks to the implementation 
 
Medical volume data sets consist of a large number of voxels. 
During registration the main portion of computational time is 
consumed by the resampling of voxels of one volume with 
respect to the second volume according to actual geometrical 
transformation for which the criterion is evaluated. In order to 
lower the portion of voxels to be resampled, we eliminate the 
information void background of the studied object. The 
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processed subvolume is determined by thresholding prior to 
volume registration. 
 
 

 
 

Figure  8: The white frame shows a bounding box defining a 
subvolume that contains the entire object. 

This approach is illustrated in Figure 8. The white frame  
(bounding box) encloses the object and the voxels inside this 
frame represent, in this case, only 41% of the whole volume 
voxels that are used for the registration. 

 
To diminish further the computational load, the 

registration is computed by using a low-resolution approach12. 
This means that not all voxels of the subvolume are used, but 
only a systematically selected subset. The subset is constructed 
by sub-sampling  the volume with integral sampling factors fx, 
fy and fz along the x, y and z coordinate axes using the nearest 
neighbor interpolation. This approach preserves geometric 
consistency of objects and ensures that each voxel in the 
volume affects the same histogram bins at all resolution levels, 
therefore, the optimum of MI is likely to be the same at all 
levels. Sub-sampling results in an acceleration by a factor of 
F= fx ⋅ fy ⋅ fz. 

 

 
sub-sampling 

factors (fx ,fy ,fz) 
|∆x| 

[mm] 
|∆y| 

[mm] 
|∆z| 

[mm] 
|∆α| 
[°] 

|∆β| 
[°] 

|∆χ| 
[°] 

t 
[sec] 

1, 1, 1 0.00 0.00 0.00 0.00 0.00 0.00 6834.1 
2, 2, 1 0.00 0.41 0.92 1.68 0.20 0.01 1528.8 
3, 3, 1 0.01 0.35 1.51 1.64 0.15 0.05 713.2 
4, 4, 1 0.01 0.18 0.01 0.05 0.04 0.08 421.9 
5, 5, 1 0.08 0.38 1.43 1.68 0.30 0.04 278.0 
6, 6, 1 0.04 0.18 1.50 1.62 0.42 0.08 206.5 
8, 8, 1 0.02 0.02 0.05 0.03 0.02 0.28 134.8 

10, 10, 1 0.11 0.49 1.56 1.53 0.32 0.31 90.8 
12, 12, 1 0.11 0.04 1.83 1.42 0.12 0.28 67.9 
16, 16, 1 0.08 0.30 1.32 1.58 1.01 0.10 48.3 

Table 5: Registration errors (related to the full resolution registration, i.e. fx=fy= fz=1) and the computational times for the 
decreasing of resolution of multimodal volumes (CT- original resolution 512 x 512 x 28, MR – original resolution 256 x 256 x 26) to 

be registered (other registration parameters: histogram bins=64, ASA preciseness=1.0E-9). 

 
 

histogram bins |∆x| [mm] |∆y| [mm] |∆z| [mm] |∆α| [°] |∆β| [°] |∆χ| [°] t [sec] 
256 0.00 0.00 0.00 0.00 0.00 0.00 300.9 
224 0.05 0.25 0.41 0.85 0.32 0.12 283.5 
192 0.02 0.03 0.01 0.01 0.13 0.03 238.4 
160 0.17 0.05 0.38 0.26 0.53 0.33 190.6 
128 0.06 0.02 0.07 0.09 0.15 0.06 175.9 
96 0.04 0.04 0.03 0.09 0.15 0.04 140.6 
64 0.18 0.14 0.42 0.31 0.87 0.13 126.7 
32 0.05 0.15 0.08 0.35 0.13 0.24 119.6 

Table 6: Registration errors (related to the full number of histogram bins, i.e. 256) and the computational times for the decreasing of 
number of histogram bins used for MI (Maes) computation (other registration parameters: sub-sampling factors=8,8,1; ASA 

preciseness=1.0E-9). 

 
 

ASA preciseness |∆x| [mm] |∆y| [mm] |∆z| [mm] |∆α| [°] |∆β| [°] |∆χ| [°] t [sec] n. c. e. 
1,0E-10 0.00 0.00 0.00 0.00 0.00 0.00 228.7 6484 
1,0E-9 0.21 0.06 0.55 0.27 0.52 0.17 126.3 3583 
1,0E-8 0.16 0.02 0.46 0.23 0.44 0.17 62.9 1747 
1,0E-7 0.39 0.39 0.27 1.47 1.06 0.29 29.1 822 
1,0E-6 0.80 1.08 0.93 1.47 0.27 0.23 13.3 368 
1,0E-5 6.22 6.30 11.13 21.2 22.5 16.01 6.0 169 

Table 7: Registration errors (related to ASA preciseness=1.0E-10), the computational times and numbers of criterion evaluations 
during optimization (n. c. e.) for the decreasing of preciseness of ASA optimization (other registration parameters: sub-sampling 

factors=8,8,1; histogram bins=64). 
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Generally, it is sufficient to apply low-resolution 
registration only. This means that the registration is found for 
lower resolution only, and its result is applied directly to the 
full-resolution volumes. The practical comment about the 
implementation of the sub-sampling factors is that no low-
resolution versions of the original volume data sets are 
created, but the resampling is done “on-fly”. In other words, 
during evaluation of volume similarity voxels belonging to the 
sub-grid defined by the sub-sampling factors are taken directly 
from the first full-resolution volume and their counterparts are 
found in the second full-resolution volume.  

 
As shown in Table 5 the accuracy of lower resolution 

registrations is acceptable even for high sub-sampling factors 
used and the process is faster. If exact registration is required, 
a two-level pyramidal hierarchy of registration can be applied. 
In this hierarchy we start at higher level of the pyramid (i.e. 
with low resolution). At the second level the number of voxels 
is increased to higher resolution (not necessarily to the full 
resolution). 

 
Results in Table 5 were obtained for registration of the 

pair of multimodal data sets (CT, MR) as described in 
Section 2. The only altered registration parameters were the 
sub-sampling factors. The absolute valued errors of 
registrations are related to the results of the full resolution 
registration. The investigated parametric space was ±50 mm 
for translations along all coordinate axes (x, y, z) and ±30° for 
rotations (α, β, χ) around theses axes. Table 5 exemplifies 
significant acceleration of the registration process, while the 
sub-voxel registration accuracy (i.e. the translation errors are 
smaller than the voxel dimensions) is preserved even for high 
sub-sampling factors. 
 
 Another approach that speeds up the registration process 
significantly is an efficient implementation of volume 
resampling. Usually, during volume resampling according to 
the geometrical transformation every new voxel is calculated 
by using a general 4 x 4 transformation matrix T: 
 

( ) ( )( )zyxuTzyxv ,,,, = . 
 
This requires a lot of time-consuming floating point processor 
operations, especially multiplications. 
 
 To avoid this time complexity the following approach has 
been used: having a transformation matrix T, four voxels lying 
at corners of the original volume ([0,0,0], [Xmax,0,0], 
[0,Ymax,0], [0,0,Zmax]) are transformed into their new 
positions. With the help of these positions incremental vectors 
along the coordinate axes are determined. Knowing the 
position of the origin of coordinate system of the resulting 
volume, i.e. T([0,0,0]), the new volume is resampled by using 
the incremental vectors for stepping with the help of trilinear 
interpolation.  
 

When using floating point arithmetic, this method speeds 
up the registration by factor about 1,10 only. To achieve more 
progressive acceleration, the coordinate system is scaled by a 
factor of 216, in order to be able to use integer arithmetic 
instead. This transformation allows to traverse the volume by 
using additions and bit shift operations only. 

 
Table 8  illustrates an example of average volume 

resampling times for the registration of the same pair of low-
resolution volumes by using either standard or the described 
fast implementation of the volume resampling. 

standard implementation 0.1389 [sec] 
fast implementation 0.0349 [sec] 

 

Table 8: Comparison of average times of volume resampling 
during registration in case of standard implementation and 

the presented fast (integer) implementation of volume 
resampling (the speed-up factor=3,98). 

 
 As mentioned in Section 3.1. the registration can be 
accelerated by lowering the number of histogram bins too. The 
corresponding results are shown in Table 6, where the errors 
of registration computed with lower numbers of bins are 
related to the result obtained for the maximal number of bins 
(256). The sub-voxel registration accuracy is kept for small 
histogram sizes too. 
 
 Table 7 shows registration errors and the computational 
times in case of lowering the preciseness of applied 
optimization strategy (ASA). Another parameter in the table is 
the number of criterion evaluations (n. c. e.) during 
registration. From the table follows that if the preciseness is 
smaller than 1.0E-7, sub-voxel accuracy is not obtained (for 
1.0E-6) or the result can be completely wrong (for 1.0E-5). In 
practice it is not advantageous to speed-up the registration 
process by lowering the ASA preciseness. On the contrary, it 
is better to use even higher values (1.0E-8, 1.0E-9) which 
increase probability to reach the global extreme of the 
criterion even if the high sub-sampling factors and the small 
number of histogram bins are applied. 
 
 In order to demonstrate the resulting speed-up factor, first 
(I) the registration of the pair of data sets (CT, MR) was 
performed with the full resolution volumes, 256 histogram 
bins and standard implementation of volume resampling. 
Afterwards (II), the sub-sampling factors fx, fy, fz were set to  
8, 8, 1, number of histogram bins was decreased to 96 and fast 
implementation of volume resampling was used. The resulting 
times are in Table 9, while the differences in geometrical 
transformation parameters of both registrations was in sub-
voxel range. 
 
 

I 28742.2 [sec] 
II 148.3 [sec] 

 

Table 9: Comparison of times of registration of full resolution 
volumes (I) and low-resolution volumes (II), see text for 

detailed explanation, the resulting sped-up factor=193,81 
(Pentium III, 600 MHz, 512 MB RAM). 

 
In practice it is very useful to apply different registration 

parameters for different tasks. To obtain the registration 
quickly (for a glance), one can use high sub-sampling factors 
and low number of histogram bins or, on the contrary, if 
he/she wants to have a precise result (e.g. for surgery 
planning) he will use low sub-sampling factors and high 
number of histogram bins. 

 
Figures 9 and 10 exemplify fusion images of some 

registration results. 
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Figure  9: 2D examples of axial CT-MR fusion images before (the left image) and after registration (the right image); 
(CT - the upper left and the lower right parts of the images). 

 
 
 

  
 

Figure  10: 3D examples of CT-MR fusion images before (the left image) and after registration (the right image); 
 (CT - the right parts of the images). 

 
 
4. Conclusion 

 
The fast and robust volume registration procedure is 
presented. Its performance enables it to be applied on common 
PC machines, which gives opportunity to be implemented in 
PC-based medical visualization systems and, thus, to be used 
in routine practice. 
 

The absolute accuracy of the proposed registration 
methods will be evaluated in the framework of “The 
Retrospective Registration Evaluation Project“5, and by using 
multimodal data sets provided by SIP Laboratory (University 
Department of Radiology, Innsbruck, Austria) where the data 
sets will be aligned by using external markers2 as a “gold 
standard” and the results will be compared with results of the 
full-automatic registration method. 
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