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Abstract
Radiation therapy (RT) is one of the major curative approaches for cancer. It is a complex and risky treatment approach, which
requires precise planning, prior to the administration of the treatment. Visual Computing (VC) is a fundamental component of
RT planning, providing solutions in all parts of the process—from imaging to delivery. Despite the significant technological
advancements of RT over the last decades, there are still many challenges to address. This survey provides an overview of
the compound planning process of RT, and of the ways that VC has supported RT in all its facets. The RT planning process
is described to enable a basic understanding in the involved data, users and workflow steps. A systematic categorization and
an extensive analysis of existing literature in the joint VC/RT research is presented, covering the entire planning process. The
survey concludes with a discussion on lessons learnt, current status, open challenges, and future directions in VC/RT research.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Computer Graphics]: Life and Medical Sciences—Health,
Medical information systems

1. Introduction

According to the World Health Organization (WHO), cancer is the
second leading cause of death worldwide [Wor18]. In 2018, 18.1
million people were globally diagnosed with cancer, while 9.6 mil-
lion deaths have been attributed to malignancies. For most cancer
types, radiation therapy (RT) and surgery are widely used for cura-
tive purposes [DJFB05, ZM16]. RT has been used as cancer treat-
ment for more than a century [Sla12], and has undergone steady
development in the past decade [THM∗13]. It is used as thera-
peutic treatment to cure the disease, as adjuvant therapy to pre-
vent tumor recurrence, or as palliative treatment to relieve patients
of symptoms. Often, RT complements surgery, chemotherapy, hor-
monotherapy, immunotherapy, or a combination of those [Was15].
The risky and complex nature of RT treatment make it a special
field of application within VC, as it requires rather sophisticated
combinations of a wide range of VC techniques.

RT is based on the use of ionizing rays, such as photon, electron
or proton radiation, to destroy malignant cells. Tumors are treated
with higher radiation doses, while adjacent healthy organ tissues
must receive lower doses, to minimize the side effects of radia-
tion [Was15]. The administered radiation dose used in RT is mea-
sured in Grays (Gy), and varies depending on the type and stage of
the cancer, as well as the intent of treatment.

RT involves much higher dose of radiation than diagnostic
modalities, such as CT and X-ray. Thus, there is a high risk of tis-
sue damage leading eventually to secondary cancer, and planning is
more important than in any other kind of medical treatment. Prior
to dose administration, the treatment must be carefully planned to

ensure adequate irradiation of the tumor target and to spare the
surrounding healthy tissues, as much as possible. To this end, pre-
cise delineation of the target tumor and all adjacent organs at risk
(OARs) is necessary. Dose calculation through simulation is then
carried out for each individual patient, in order to assess whether a
sufficient dose to destroy the tumor is achieved, while maintaining
tolerable doses to the OARs.

The treatment process can be internal (e.g., Brachytherapy treat-
ment) or external (e.g., External Beam Radiation Therapy or
EBRT) [Was15]. In the former, radioactive sources are positioned
precisely inside the area to be treated, affecting only a very local-
ized region [GPM∗02]. In the latter, the radiation source is a lin-
ear accelerator (LINAC), and is located outside of the patient. The
LINAC accelerates electrons, allowing them to collide with a heavy
metal target to produce high-energy x-rays, shaped to conform to
the shape of the target volume covering the tumor. The beam is
shaped by a multileaf collimator and is directed to the tumor by a
gantry rotating around the patient, who lies on a movable treatment
couch. A schematic depiction of a LINAC is presented in Figure 1.
In this survey, we focus on EBRT, as it is the most widespread treat-
ment in current clinical practice—hence, visual computing (VC)
solutions have mostly addressed this.

The complex data, the compound processes and the multitude of
user groups involved in RT make it particularly interesting for sev-
eral fields of research [PB13]. These include image processing, vi-
sualization, VC and machine learning. Currently, there are several
reasons which bring RT into the spotlight of clinical and technolog-
ical research, leading also to new challenging research questions for
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Figure 1: Schematic depiction of a linear accelerator (LINAC)
used in External Beam Radiation Therapy (EBRT) treatment, with
its major components and employed axes. Rotational and transla-
tional movements of several parts are depicted with arrows.

VC. Recently, there is an increasing demand for more personalized
therapy, which will maximize tumor treatment and minimize side
effects [THM∗13, TOG06]. This trend requires the development
of new means within the VC domain, while targeted patient treat-
ment includes more and more often additional patient- and tumor-
specific information [TOG06]. All this information is complex and
heterogeneous, and new strategies for its visualization, exploration
and analysis need to be designed [Rai17].

There is a significant amount of work applied in the various steps
of the RT workflow, covering a wide range of VC research. De-
veloping novel VC methods to support RT research and RT plan-
ning requires interdisciplinary strategies—integrating the whole
VC portfolio from data, image and information fusion [NRS∗14,
SFA∗17], to interaction [AvHL∗17], exploration and visual ana-
lytics [Rai17, RBV17, RMB∗16, RvD∗15, RvdHvH∗14]. The topic
is also manifold, involving different sources of data and uncer-
tainty, several specialist users, and a variety of applications and
challenges—many of which are also applicable to other medical
and non-medical domains.

As we will illustrate in the upcoming sections, RT planning
involves multi-modal and multi-valued data [Was15]. Also, each
step of the RT workflow involves heterogeneous sources of infor-
mation. These might relate, for example, to multi-modal registra-
tion [SFJ∗16] and segmentation data [RMB∗16], to ensemble data
from the optimization phase of the dose planning [SRV16], or to
modeling data from tumor control probability (TCP) [RCM∗16]
and normal tissue complication probability (NTCP) [RBGR18,
RCA∗18]. Understanding, exploring and analyzing all these data
channels can be a demanding and time-consuming task.

Additionally, uncertainty [Rai18,RPHL14] is present at all steps
of the workflow, affecting the accuracy and precision of the final
outcome [BCTT08, KMB∗06, vRL02]. Uncertainties, which can-
not be corrected or minimized, need to be addressed and their
impact has to be predicted. For example, motion management in

RT can be challenging for tumors and organs affected by breath-
ing, e.g., the lung [BCTT08, KMB∗06]. In particular, for treat-
ment methods which involve critically high doses, such as Stereo-
tactic Body RT (SBRT) for lung cancer, even slight movements
cannot be ignored. 4D imaging and deformable registration can
be used to model breathing motion [WSVHD08], but these in-
troduce uncertainty [SFJ∗16]. Uncertainties are also present in
segmentation [RBGR18, RMB∗16] and (radiobiological) model-
ing [RCA∗18, RCM∗16], to name a few. In particular, within ra-
diobiological modeling, the careful quantitative reasoning about the
probability of tumor control is unique for medical treatment. Thus,
uncertainty qualification related to predictions and uncertainty vi-
sualization fit in the workflow of RT planning, as opposed to other
types of medical treatment.

Another important aspect is the variety of specialists involved in
the different steps of the RT workflow, such as radiologists, radia-
tion oncologists, medical physicists and dosimetrists. While patient
treatment is the primary goal, users have different benefits from the
use of VC [PB13]. These may include, e.g., diagnosis, data explo-
ration, verification or decision making. Therefore, the needs of dif-
ferent users need to be addressed individually, increasing the com-
plexity of the visual design process [DNT09].

Despite the importance of VC in RT, the last surveys have been
published over a decade ago [Eva08,PC00,Pel98,PGC∗96,Rob99].
They address only imaging and volume rendering within the appli-
cation domain of RT, and do not cover the latest advancements.
There has not been any previous effort in systematizing existing
literature in the field and in providing recommendations for future
directions for VC in RT. With this survey, we expect to trigger inter-
esting new directions for future work, both in RT applications and
in other domains. Apart from the need for VC strategies to tackle
challenges in RT planning, we foresee that existing ones for the
RT workflow can be reusable, generalizable or applicable to other
fields—also non-clinical ones.

Contributions—The contributions of this survey are:

• A comprehensive and comprehensible taxonomy of published
work in the field of VC, applied to the domain of RT.
• A discussion, underlining the achievements of VC in RT so far,

highlighting the main challenges and limitations, and envision-
ing applicability for future work.
• The identification of key research directions for the future based

on the taxonomy and discussion.

Scope of this work—For the collection of previous work in-
cluded in the taxonomy, we used an extensive search of literature
databases. Results of the literature search were required to cover
or to be related to visual computing, radiotherapy and its planning.
After the initial literature search, results were removed if they were
not within the scope. We consider within scope all applications
from the field of VC (visualization, visual analytics and VR/AR
applications) that are related to one or more steps of RT planning.
We consider out of scope previous work that was not within the VC
and RT planning interface. Details about the literature search and
sources are explained in Section 3 and summarized in Table 1.

Outline—The remainder of this survey is structured as follows. In
Section 2, we discuss necessary background notions of the RT do-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



M. Schlachter & R.G. Raidou & L.P. Muren & B. Preim & P.M. Putora & K. Bühler / STAR: Visual Computing in Radiation Therapy Planning

Dose Plan Review 
& Treatment Evaluation 

Definition of Target 
Volumes & Organs at Risk

Imaging 
Acquisition

Treatment Plan Design 
& Dose Calculation

Image Guided 
Adaptive RT

Setup Verification 
& Treatment

Diagnosis 
& Referral

Spatial Evaluation Non-Spatial Evaluation

Data FusionData Registration Data Segmentation Data Exploration & Analysis

Figure 2: The steps of the workflow of RT planning, as adapted from the book of Washington and Leaver [Was15]. Within this survey, we are
concerned with the workflow parts, within the gray margins. Note that most of workflow steps comprise sub-steps, some of which are denoted
in the blue pop-ups.

main. In Section 3, we present the taxonomy scheme and a detailed
description of previous work falling within each of the taxonomy
categories. Furthermore, we discuss evaluation methods and areas
of main concentration of the literature. Section 4 presents an out-
look from the RT domain. Section 5 discusses so-far achievements
of VC in RT, as well as present challenges or limitations, and di-
rections for future work from a joint VC/RT perspective. Section 6
concludes the survey with a summary of this work.

2. Radiation Therapy Planning: Workflow, Data and Users

In the past decade, RT has undergone a steady evolution (see Sec-
tion 4), offering flexibility in radiation dose delivery. The advent of
new delivery techniques has improved treatment, such as Intensity-
Modulated Radiation Therapy (IMRT) and more recently Volu-
metric Arc Therapy (VMAT)—both subsets of EBRT. These tech-
niques can precisely address tumors, by modulating the intensity of
the radiation beam around the tumor volume, while decreasing or
avoiding radiation among the surrounding healthy tissues [Web01].
This modulation, i.e., shaping and aiming of radiation beams from
several angles of exposure to cumulatively target the tumor, hap-
pens in the LINAC by the multileaf collimator, as shown in Fig-
ure 1.

Still, RT may result in a number of potential side effects de-
pending on the dose, fractionation and location. These can range
from acute skin irritation [Was15] to secondary cancer decades
later [HW03]. To maximize the effectiveness of tumor treatment,
while minimizing the damage to surrounding tissues, the radiation
dose administration must be carefully planned in dedicated soft-
ware [Was15]. RT planning follows a workflow, which can be out-
lined by a series of steps depicted in Figure 2. The time required
for the planning procedure differs for each individual patient and
is specific to the characteristics of the case and the tumor. An in-

depth workflow analysis has been previously presented by Aselmaa
et al. [AGL∗13].

After diagnosis and referral, patient images are acquired
[TAKC09]. Multiple imaging modalities are often employed, as
studies have demonstrated that the combination of different ac-
quisitions can improve detection, diagnosis and staging [BJE∗11,
BRC∗12, CKK∗07, HCE∗07]. Clinical imaging techniques can be
classified into anatomic methods, which measure physical proper-
ties of tissue, such as tissue density acquired from Computed To-
mography (CT), and functional imaging techniques, which mea-
sure functional characteristics, such as metabolism acquired from
Positron Emission Tomography (PET) [Eva08]. In a prostate cancer
case, multi-modal imaging can include CT Imaging, T2-Weighted
Magnetic Resonance Imaging (MRI), Diffusion-Weighted Imaging
(DWI), Dynamic-Contrast Enhanced MR Imaging (DCE-MRI) and
MR Spectroscopy Imaging (MRSI) [BJE∗11, BRC∗12, CKK∗07,
HCE∗07].

A crucial step of treatment planning is the definition of target
volumes, i.e., the tumor tissue, and organs at risk (OARs), i.e., vol-
umes representing whole organs or parts which have to be spared
during treatment [Nje08]. The delineation (or segmentation) of tar-
gets and OARs often employs more than one imaging source, which
has proven to be advantageous with regards to specificity and sen-
sitivity [LKCG12]. Data fusion for the integration and combination
of various information channels is also part of this process, while
interactive approaches for the exploration and analysis of the data
are also employed. All aforementioned images need to be regis-
tered [ZF03], to be transformed into the same coordinate system as
the planning CT.

After the localization of the tumor and adjacent organs, one (or
more) initial treatment plan(s) is (are) designed, using treatment
planning software (TPS). Complex constraints and guidelines are
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employed to determine the geometric, radiobiological and dosi-
metric aspects of the treatment—taking into account the OARs,
and optimizing for tumor treatment and for healthy tissue preser-
vation [Was15]. For target volumes, a required minimum dose is
prescribed, whereas OARs should receive doses as low as pos-
sible [BRC∗12, HMP∗18]. The tolerance for radiation differs be-
tween organs and depends on their tissue properties. This informa-
tion is also incorporated to prescribe a level of radiation so that no
damage is induced to them.

The calculated treatment plan(s) will undergo further review and
approval. Dose volume histograms (DVH) [DMB∗91] are often
used to summarize the distribution of doses to the target and OARs.
Also, the final prescribed radiation dose will not be administered
all at once. Fractionation [THM∗13, Was15] is used in most treat-
ments, where the total dose is spread out in adequate amounts over
time, to allow the recovery of normal cells and to prevent the repair
of tumor cells between fractions. The step of radiobiological mod-
eling is conducted for the effectiveness assessment of the selected
RT strategy, involving Tumor Control Probability (TCP) model-
ing [WN93] and Normal Tissue Complication Probability (NTCP)
modeling [MYJ∗10]. TCP models are statistical models that quan-
tify the probability that a tumor is effectively controlled, i.e. treated,
given a specific radiation dose, and respectively NTCP models, that
normal tissue around the tumor is harmed.

Image-Guided Adaptive RT (IGART) requires to further verify
whether the initial plan is still applicable. Sometimes, changes in
the tumor location and shape or anatomical changes of the patient,
e.g. due to weight loss or due to rectal and urinary filling, require
further plan modifications between treatment fractions. At the point
of treatment delivery, a prior verification step ensures that the pa-
tient is correctly positioned.

2.1. Users Involved in RT Planning

Several clinical experts are involved in the steps of the RT work-
flow [AGL∗13]. Each specialist has a different role—implying that
VC has also different benefits for them. The most relevant specialist
groups are:

1. Radiation oncologists (main responsibles for the prescription,
approval and supervision of the treatment—involved in all steps
of the RT workflow).

2. Medical physicists (scientists who advise on the best treatment
strategy—involved in Definition of Target Tumor(s) & Organs
at Risk, Treatment Plan Design & Dose Calculation, Dose Plan
Review & Treatment Evaluation, Image Guided Adaptive RT).

3. Radiologists (doctors who specialize in medical imaging ac-
quisition and interpretation—involved in Diagnosis & Referral,
Imaging Acquisition, Definition of Target Tumor(s) & Organs at
Risk).

4. Radiotherapists (or therapy radiographers, specialists who op-
erate the treatment machines—involved in Setup Verification &
Treatment).

5. Dosimetrists (main responsible for the careful calculation of the
dose in the specialized equipment—involved in Treatment Plan
Design & Dose Calculation, Dose Plan Review & Treatment
Evaluation, Image Guided Adaptive RT).

2.2. Data Involved in RT Planning

The entire workflow of RT planning is based on the imaging ac-
quisitions of the anatomy and pathology of the patient. Yet, each
step of the workflow incorporates additional information or data
derived from the imaging acquisitions, as depicted in Figure 2. The
final outcome of the workflow is a dose plan, which incorporates
2D or 3D radiation dose information. During this entire planning
process several imaging and non-imaging data accumulates around
the patient [PPB15].

2.2.1. Imaging Data

In the image acquisition step, the necessary images needed for
radiotherapy planning are acquired from a multitude of sources
[HCE∗07]. These can be CT and MRI data, and data derived
thereof, depending on the target anatomy. For example, DWI, DCE,
MRSI are used for prostate and cervical tumor treatment plan-
ning [BRC∗12, BJE∗11, CKK∗07]. For lung tumors, the use of
functional imaging, such as (4D) PET/CT, can be advantageous for
tumor definition [SKO06]. Brain tumors may additionally require
Diffusion Tensor imaging (DTI) [MBC15]. Details on each modal-
ity can be found in recent surveys [LSBP18, PBC∗16]. During this
step, the planning CT is acquired, a high quality CT which plays an
important role in the planning. It serves as the reference coordinate
system for target definitions, as well as for other images acquired
using different modalities (registration to the planning CT). Fur-
thermore, the tissue densities are used for the dose calculation.

2.2.2. Target Volumes Concept

An important concept within RT is the use of Target Volumes, de-
veloped by the International Commission on Radiation Units &
Measurements (ICRU) [Ber07,GLC∗04]. Many treatment planning
approaches are specifically targeting one (or more) of these vol-
umes, which are explained below. A schematic overview can be
found in Figure 3 and two examples are presented in Figure 4.

The volume that contains the visible, macroscopic part of the
tumor (within the limits of the employed imaging technique) is
called the Gross Tumor Volume (GTV). The Clinical Target Vol-
ume (CTV) contains the GTV and encompasses microscopic ex-
tensions into healthy tissues, that are not visible [Ber07, GLC∗04].
The Internal Target Volume (ITV) addresses uncertainties due to or-
gan motion [JYW99,RSO∗96], and is only an intermediate volume
that has to be expanded by margins for setup errors [SH02]. The
ITV concept is not always required, but is common for lung cancer,
where breathing motion has to be considered [JHP∗15]. The Plan-
ning Target Volume (PTV) is the volume encompassing the CTV
(and the ITV if employed), which takes into account the fact that
the CTV and the involved patient anatomy might vary in position,
shape and size within or between fractions. It accounts specifically
for uncertainties, such as patient setup errors [SH02] to ensure that
the CTV will receive the prescribed and planned dose, by adding
margins to the CTV (or ITV) [Ben08, JYW99, MvM02]. Based on
the PTV, appropriate beam sizes and beam arrangements will be
selected to ensure that the prescribed dose is actually delivered to
the CTV [Ber07]. The Treated Volume (TV) is planned to receive at
least a dose, appropriate for the purpose of the treatment. It is, thus,
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Figure 3: Volume concepts used in RT planning. The Gross Tu-
mor Volume (GTV), Clinical Target Volume (CTV), Internal Target
Volume (ITV) and Planning Target Volume (PTV), as well as the
organs at risk (OAR) are denoted. The Treated Volume (TV) is im-
plicitly defined (by a dose value) after dose calculation. The PTV
and ITV account for patient setup errors and other sources of inac-
curacy, during the administration of the radiation dose. Planning
Organs at Risk Volume (PRV) and Internal Target Volume (ITV)
are not always defined. A possible configuration of a target close to
an OAR is shown on the right. Overlapping volumes can have an
impact on the dose calculation, and might lead to insufficient PTV
coverage or undesired dose levels for the OAR.

a volume enclosed by an isodose surface corresponding to that pre-
scribed dose level [Ber07]. For example, if the prescribed dose is 40
Gy, and the minimum dose was 5% below, the TV is then enclosed
by a 38 Gy isodose surface.

Organs at risk (OAR) are normal tissues whose radiation sensi-
tivity may significantly limit the treatment. These can be the spinal
cord in lung tumor treatment or pelvic organs in prostate tumor
treatment. In analogy to the PTV, safety margins can be added
around the OAR volumes [MvM02], leading to the concept of the
Planning Organ at Risk Volume (PRV).

In clinical reality, Target Volumes and OARs can overlap or even
include each other. A patient with a brain tumor, for example, has
the target inside the brain, which is an OAR itself. The same applies
to a lung cancer patient, where the lung itself is an OAR. Some
overlaps are more critical than others, such as the brainstem and
PTV for brain cases, or trachea and ITV for lung cases. In Figure 4
the left image is on the lung border and the right image is cen-
tral and is more critical. Furthermore, determining the margins is
not straightforward and depends on a multitude of factors [vH04].
Overlaps of target volumes and OARs present a challenge as the
shape of prescribed dose might not be achieved, and on the other
side the OARs might receive too high doses in the overlapping re-
gions as schematically depicted in Figure 3 (right). Including in-
formation about overlaps during treatment plan evaluation has the
potential to improve the overall quality [WRS∗09].

2.2.3. Uncertainty in RT Planning

RT planning is—among all therapy planning processes—the one
where uncertainty, validation, and verification are considered es-
sential by the involved physicians. In literature, there is no widely
accepted definition of uncertainty. A definition is given by Griethe

Figure 4: Left: Isodose surface encompassing the ITV. This is a
less critical example, due to the location of the tumor (at the lung
border close to a rib), where the PTV (ITV with setup error margin)
is not representing the TV well. Right: Example of a difficult case
(central lung), where the tumor is close to an OAR. The PTV and
PRV were overlapping in this case. Images adapted from [SFA∗17].

et al. [GS05], as a composition of different concepts, such as er-
ror (outlier or deviation from a true value), imprecision (resolution
of a value compared to the needed resolution), subjectivity (degree
of subjective influence in the data) and non-specificity (lack of dis-
tinction for objects). In RT planning, we define uncertainty as any
source which may cause variations in any step of the workflow and
ultimately in the treatment outcome. Uncertainty is an additional
data source, present at all steps of the planning workflow. The quan-
tification and communication of uncertainty is essential for the ac-
curate interpretation of the outcome, for reducing the existing un-
certainties and risks, and potentially, for improving the outcome.

With regard to imaging modalities, both DWI and DCE imag-
ing have highly varying sensitivity and specificity for tumor de-
tection [KKP∗08, KVCC08, TAKC09], depending on patient char-
acteristics, on the tissue zone and on the scanning procedure it-
self. Poor spatial imaging resolution and image distortions, due
to magnetic field inhomogeneities at the interfaces between dif-
ferent tissues are additional issues in DWI [BJE∗11, CKK∗07,
SFA∗05]. In addition to this, pharmacokinetic modeling, which
is employed in clinical research for the derivation of additional
tissue characteristics from DCE data, is also a source of uncer-
tainty [BRP∗04, TAKC09, TBB∗99, VTM∗12]. Often, to minimize
uncertainty different imaging modalities are combined [BJE∗11,
BRC∗12, CKK∗07, HCE∗07]. In the delineation of the target vol-
umes and OARs, uncertainties due to patient motion, or due to
changes in the anatomy and pathology of the patient are consid-
ered within the aforementioned target volume definitions (Sec-
tion 2.2.2). In the other steps, uncertainty can be caused by an
ad-hoc choice, assumptions, stochastic processes or inter-observer
variability, as discussed in a recent work by Raidou et al. [Rai18].
A more detailed review on uncertainty visualization can be found
in the survey by Ristovski et al. [RPHL14].

2.2.4. Dose Plans and Dose Volume Histograms

Dose plans convey 2D or 3D radiation dose information (dose dis-
tribution), as generated from treatment planning systems based on
a 3D reconstruction of a planning CT scan. Dose distributions are
scalar data maps, where the values indicate in Gy the radiation dose
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Figure 5: The axial, sagittal and coronal slices together with a 3D
overview to evaluate the simulated dose distribution used to treat
prostate cancer. The 3D overview (upper left) shows the previously
segmented anatomical structures along with the three orthogonal
slices. The slice views employ isolines and colored regions to dis-
play the dose distribution as percentage of the target radiation in
the tumor (Courtesy of Mathias Walke, Department of Radiation
Treatment Planning, University of Magdeburg, taken from the book
of Preim and Botha [PB13]).

at each location of the patient—in reference to the space of the plan-
ning CT. An example of a dose plan is shown in Figure 5. Often,
dose plans are regarded together with the so-called dose volume
histograms (DVH) [DMB∗91]. A DVH, as shown in Figure 6, sum-
marizes the 3D dose in a 2D plot, relating radiation dose (horizontal
axis) to tissue volume (vertical axis). This can be a tumor target or
a healthy organ, and the plot can have a differential or cumulative
form. A DVH often includes all targets and OARs involved in the
radiotherapy plan, where each structure is represented by a color-
encoded line.

3. Taxonomy and Presentation of Previous Work in VC for RT

In this section, previous joint research of VC and RT is discussed.
First, we provide information about the selection of papers. To nav-
igate the user through the existing literature, a taxonomy for the
classification of the papers and the reasoning behind the selection
of this taxonomy scheme is presented. Previous related work is,
finally, discussed within the provided categorization.

3.1. Literature Search and Sources

We conducted an extensive search of literature databases. Titles
and keywords used in the literature related to visual computing,
radiotherapy and its planning. This led to the formulation of the
following general search term: (“visualization” OR “vi-
sualisation” OR “visual computing” OR “visual
analytics”) AND (“radiotherapy” OR “RT” OR “ra-
diation therapy” OR “radiation treatment”) AND
(“planning” OR “plan”).

For the literature search, the sources reported in Table 1 were
considered. When possible, logical search operators were used to

Figure 6: The dose-volume histogram indicates which percentage
of a structure volume receives a certain dose (x-axis) to treat an
esophageal carcinoma. The orange curve relates to the tumor vol-
ume which indicates that 95% of its volume receive at least 95%
of the target dose, as shown with the 7-mark (Courtesy of Mathias
Walke, Department of Radiation Treatment Planning, University of
Magdeburg, taken from the book of Preim and Botha [PB13]).

directly apply the search term, for instance in Pubmed and IEEE
Xplore. If this was not possible, multiple searches with potentially
broader results were conducted. For instance, the Eurographics
Digital Library search is very limited and three separate searches
with the terms “radiotherapy”, “radiation therapy”
and “radiation treatment” were performed.

The query results were merged and duplicates were removed,
e.g., Medline and IEEE Xplore both give results from TVCG. All
results were considered potentially related, and were further re-
duced by removing unrelated or out of scope entries on a one-
to-one basis. The initial search yielded 601 candidates: Medline
(464), IEEE (71 additional to Medline), Eurographics Digital Li-
brary (33), CGF (19), Visual Computer (9) and ACM (5), which
were reduced to 105 papers employed for building the taxonomy.
Results were considered as unrelated or out of scope, if they were
only matching the search term due to titles in the reference list or
author biographies and if they were not within the joint VC and
RT scope. Additionally, the papers were required to have a strong
connection to visualization or visual analytics or visual computing
within RT research. An example for a discarded paper would be a
clinical study for an RT related topic where the tumor is “visu-
alized” for demonstration purposes, or a pure imaging technique
article using “visualization” in an imaging sense.

3.2. Taxonomy Description

As discussed in Section 2, RT has several particular characteristics
with regard to the multitude of involved data, complex and risky
processes and users. This requires the incorporation of many dif-
ferent strategies from the domain of VC. For example, registration
or multi-modal visualization might be relevant for different steps
of the workflow, but each step has specific clinical requirements
and targets. Although previous work in the general domain of VC
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Table 1: Table representing the literature search and sources.

Source Index Multiple
Pubmed/Medline Various including:

– IEEE TVCG (since 2004)
– IEEE TMI (since 1997)
– IEEE CGA (since 2004)
– Journal of CARS (since 2009)
– CGF (PMC only)

IEEE Xplore all IEEE
EG Digital Library all EG
ACM Digital Library all ACM
Computer Graphics Forum -
The Visual Computer -
Computer Methods in Bio-
mechanics and Biomedical
Engineering

-

might also be applicable for RT and is referenced in the upcoming
sections whenever relevant, it is more appropriate and clinically
significant to address each of the steps of the workflow separately.
To this end, we do not focus on a method-based categorization, but
on a taxonomy which reflects the steps of the clinical workflow. As
the entire radiotherapy treatment process is based on this workflow,
this division into the clinical steps is anticipated to be more natural
for readers both from the VC and the RT domain. It is also more
probable that readers of this article are more concerned with one
specific part of the entire pipeline. Another important aspect is the
adoption rates of the discussed approaches, in an attempt to iden-
tify significant trends and gaps within the current literature. Know-
ing whether previous work has been (partially) integrated in clini-
cal routine is anticipated to give insights into unsolved issues, into
challenging future pathways and into topics that upcoming joint
VC/RT research could tackle. The taxonomy is built upon two di-
mensions:

1. Steps of the RT workflow addressed by the proposed methods—
This dimension implies also a clinically-relevant categorization
based on the available data, upon which the methods were built,
as discussed in Section 2.2. It comprises the following cate-
gories:

• Target and OAR Definition (Section 3.3)

– Data Registration (Section 3.3.1)
– Data Fusion (Section 3.3.2)
– Data Segmentation (Section 3.3.3)
– Multi-Parametric Data Exploration and Analysis (Sec-

tion 3.3.4)

• Treatment Plan Design and Dose Calculation (Section 3.4)
• Dose Plan Review and Treatment Evaluation (Section 3.5)

– Spatial Evaluation (Section 3.5.1)
– Non-Spatial Evaluation (Section 3.5.2)

• Planning Strategies for Image Guided Adaptive RT (Sec-
tion 3.6)

2. Adoption of the proposed methods within clinical practice—

This dimension implies also a categorization based on the users
of the methods, as discussed in Section 2.1. It comprises the
following categories:

• Integrable:

– Benefits for the practice have been proven.
– Tackling issues of current clinical practice.
– Routine implementation is possible today.

• Developmental:

– Benefits for the practice have not been proven yet.
– Tackling less common issues of clinical practice.
– Routine implementation might be possible in the future.

This category does not imply a “hard” categorization, and some
papers are categorized as Integrable/Developmental expressing
an affinity to Integrable, and vice versa. The categorization was
made at the (time) point of writing this survey. Thus, it may
change in the upcoming years especially for the Developmental
category, depending on whether approaches become accepted
and widely used. Please note that this is based on the search
results as well as the experiences and personal opinions of the
authors. As it is not possible to discuss the adoption dimension
separately for all the papers included below, we provide a sum-
marization at the end of each major step-related subcategory,
where we also comment on adoption. A detailed view on the
adoption dimension is provided in Figures 7 and 8.

For the categorization of the existing literature based on the two
aforementioned dimensions, the authors of this survey read all pa-
pers and decided on a one-to-one basis. This categorization has also
been summarized in Figures 7 and 8. A particular aspect that was
taken into account was whether an evaluation (and what kind of
evaluation) of the presented methods had been conducted. This is
documented separately in Section 3.7 and summarized in Table 2.
The areas of main concentration of the literature are also identified
and discussed in Section 3.8.

3.3. Target and OAR Definition

After all images are acquired, the tumor with its respective volume
definitions and the adjacent OARs are delineated. Multiple sub-
tasks are involved in this step, ranging from data exploration and
analysis, data registration, data fusion to data segmentation (auto-
matic or manual). These are crucial steps in the workflow, as the
subsequent treatment design and dose calculation will be directly
influenced by any inaccuracies.

3.3.1. Data Registration

Previous work related to data registration revolves around two ma-
jor topics: motion and accuracy assessment, and interactive ap-
proaches for registration.

Approaches Related to Motion and Accuracy Assessment—As
discussed previously, tumor motion represents a challenge in plan-
ning and delivery of radiotherapy [KMB∗06]. In lung tumor treat-
ment, 4D data for treatment planning in the presence of respiratory
motion have been employed to several case studies. Deformable
image registration (DIR) is an important component [RCCW05].
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Figure 7: Treemap representation of the first dimension of the taxonomy, related to the Steps of the RT workflow addressed in VC literature
and the Adoption dimension of the taxonomy. Each reference is marked with 1 (first row, green) to indicate Integrable approaches, and with
2 (second row, yellow) Developmental approaches. We denote by 3 (third row, cyan) Developmental/ Integrable and by 4 (fourth row, orange)
Integrable/Developmental approaches.

The amount of data generated with 4D imaging significantly in-
creases the time needed for image review and target volume delin-
eation, and DIR can be used for contour propagation [OJB∗07] to
reduce the workload of manual delineations.

Motion-encompassing methods use DIR to derive a single scan
out of a 4D-CT scan for target delineation, which represents the
tumor in its time-averaged mid-position [WSVHD08]. Further-
more DIR can be used to model breathing motion. Ehrhardt et
al. [EWR∗08] use DIR for the generation of a mean motion model
of the lung, to predict the breathing motion of a patient without the
knowledge of 4D information by matching the model. The motion
is visualized by color encoding the displacement field magnitudes.
Cover et al. [CLS06] demonstrate the standard approach employed

for the visualization of motion in 4D-CT lung data, which com-
prises simple color intensity projections. Although very simplistic,
this kind of images are common for the representation of motion or
deformation during registration and fusion.

Registration is accompanied by uncertainty, primarily related
to the inherent characteristics of the different imaging modal-
ities that are co-registered. In addition to this, different regis-
tration algorithms may bring different types of uncertainty, re-
lated to localization accuracy or robustness [KBP∗07]. This might
be an important aspect to consider, for instance when used for
dose warping [VLM∗15]. The literature on registration methods is
vast [FVW∗11,KBD16,MV98,SDP13,VMK∗16,ZF03] and differ-
ent algorithms can be employed, each with different strengths and
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Figure 8: Heatmap and histogram representations to depict the distribution of previous literature within the two dimensions of the taxon-
omy. Horizontal axis: Categorization according to the addressed Steps of the RT workflow. Vertical axis: Categorization according to the
Adoption of the methods within clinical practice. We also show the hierarchy within the taxonomy. The grayscale color encoding denotes the
increasing number of papers, going from white (0) to black (max). Annotations: (a) Motion and Accuracy Assessment, (b) Interactive Reg-
istration, (c) Data Fusion, (d) Manual Segmentation, (e) (Semi-) Automatic Segmentation, (f) Exploration and Analysis of Imaging-Derived
Features, (g) Tissue Characterization, (h) Treatment Plan Design and Dose Calculation, (i) 2D/3D, (j) VR/AR/Holographic, (k) Simulation of
Delivery, (m) DVH Analysis, (n) Anatomical and Feature Analysis, (o) TCP/NTCP Analysis, (p) Inter-Fraction, (q) Intra-Fraction, (r) Non-
Image Guided for Intra-Fraction Monitoring. (1) Data Registration, (2) Data Fusion, (3) Data Segmentation, (4) Multi-Parametric Data
Exploration and Analysis, (5) Spatial Evaluation, (6) Non-Spatial Evaluation. (I) Target and OAR Definition, (II) Treatment Plan Design and
Dose Calculation, (III) Dose Plan Review and Treatment Evaluation, (IV) Image Guided Adaptive RT.

implications. In particular, the use of non-rigid registration requires
the selection of parameters, which can yield results with large vari-
ability [ESS12, RPSWI10]. In other cases, the lack of objective
ground truth in the validation of registration creates the need for
manual registrations by experts, which introduces uncertainty that
is related to inter-observer variability.

The accuracy of the registration method needs to be analyzed
and validated. Visual assessment is one way to verify that the ac-
curacy is sufficient enough for the use in planning. In the study of
Hamdan et al. [HBR∗17] checkerboard visualizations are used to
verify the alignment of the registration of MRI and CT images for
prostate images together with contours. Visualization of DIR qual-
ity using local image dissimilarity has been proposed by Schlachter
et al. [SFJ∗16], where the verification is based on voxel-wise cal-
culated dissimilarity value to indicate the match or mismatch. Fur-
thermore, it includes different interaction and visualization features
for exploration of candidate regions to simplify the process of vi-
sual assessment. This approach is presented in Figure 9.

Interactive Registration Approaches—Interactive rigid image
registration of multiple imaging modalities using a volume-view-
guided system has been developed by Li et al. [LXN∗05]. To dis-
tinguish each individual volume in the registration process, mono-

color visual representations are used for each image modality, such
as red, green, or blue. The color distribution on the voxel volume
or a sub-volume can be used as registration criterion, where the ho-
mogeneity of the color distribution is used as an indicator for an
optimal match. Interactive DIR using landmarks to steer the algo-
rithm has been presented by Cheung et al. [CK09]. Landmarks can
be added, removed, and adjusted between repeated registrations.
In their approach, landmark pairs were based on visual correspon-
dences, identified by the user on the images to be registered. The vi-
sualization methods used for showing the quality include checker-
board display of the fixed and moving images, 3D visualization of
the deformation field using glyphs overlaid on a slice of the target
image, and a warped grid to show the transformation warping.

3.3.2. Data Fusion

Single modality may not provide enough information with re-
spect to tumor tissues, as well as the tissues that surround tar-
get organs. Combining different modality images can be a nec-
essary tool in cancer treatment [LSBP18, PBC∗16]. The specifics
of the integration and combination of various channels of data in-
formation is done through multi-modality image fusion. Lawonn
et al. [LSBP18] recently authored a survey on the visualization of
multi-modal medical data. Furthermore, an overview on volume vi-
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Figure 9: Assessment of deformable image registration quality,
measured by local image dissimilarity, and visualized together with
the original images. Different interaction and rendering modes al-
low for a detailed inspection in areas, where dissimilarity indicates
errors due to the underlying registration algorithm [SFJ∗16].

sualization with a focus on medical applications can be found by
Zhang et al. [ZEP10]. Therefore, we focus on data fusion restricted
to radiation treatment planning. Image fusion, i.e., the combination
of various images into a single image, is required for an integrated
interpretation of the complementary information in the underlying
imaged structures. For example, PET/CT or PET/MRI data can be
fused to combine functional and anatomical information [LSBP18].
Often, the different modalities are overlaid and presented with a
color-encoded scheme. An overview on medical image fusion in
general is given by James and Dasarathy [JD14].

An approach that goes beyond the mere color-encoded, overlaid
representation of fusion is proposed by Kim et al. [KCEF07]. The
authors propose an entire workflow for interactive multi-volume vi-
sualization and the fusion of PET/CT images of lung and brain. The
images are initially segmented using a fuzzy c-means cluster anal-
ysis. Subsequently, the resulting segmentation map, together with
the initial PET and CT data are rendered, fused and interchanged. In
the work of Chavan et al. [CT14], an approach for multi-modality
image fusion is employed with the purpose of providing better
visualization (i.e., representation), accurate diagnosis and appro-
priate treatment planning. In this work, different fusion rules are
employed and evaluated against each other in order to determine
which are the ones that carries less uncertainty, i.e., noise or vi-
sual artifacts, with a focus on uncertainty minimization. Illustrative
rendering which combines anatomical information from CT scans
with functional information from PET are found in the work of
Merten et al. [MGLS∗16]. Illustrative rendering techniques, com-
bining order-independent transparencies with boundary enhance-
ments and silhouettes are proved to provide an excellent spatial
perception and evaluation of tumor position, metabolic and ther-
apeutic agent activity.

Additional information has been incorporated with the inclu-
sion of MRSI data in the fusion process [NLK∗14]. Graves et
al. [GPN∗01] present an initial attempt to include 3D MRSI in-

formation in the planning process with basic viewing of MRSI data
as fixed contours embedded within MRI and CT data. The fusion
of multiple MR images (T1, T2 and MRSI) is proposed by Marino
et al. [MK11] using a score volume which takes into account each
of the three acquisition types. The MRSI score is based on detect-
ing areas of increased chemical ratios indicating the possibility of
cancer.

3.3.3. Data Segmentation

For the definition of the tumor target and the surrounding or-
gans at risk, conventional approaches involve manual segmenta-
tion through expert delineation and (semi-)automatic segmenta-
tion methods. An overview on medical image segmentation can be
found in Pham et al. [PXP00] or the book of Birkfellner [Bir14],
and—with a focus on interaction—by Olabarriaga and Smeulders
[OS01]. A review on deep learning in medical imaging segmenta-
tion, focusing on MRI data was recently given by Lundervold and
Lundervold [LL18].

Approaches Related to Manual Segmentation—Manual delin-
eations, although conducted by expert radiologists, might result in
errors due to inter-observer variability [PM06]. This well-known
problem affects the entire RT workflow [GEH∗02].

Approaches Related to (Semi-)Automatic Segmentation—
Automated segmentation algorithms can greatly reduce the delin-
eation time and the efforts of a human expert. For example, auto-
matic segmentation based on statistical shape modeling has been
proposed by Seim et al. [SKH∗08] for the segmentation of pelvic
bones, or by Vik et al. [VBS∗12] for the segmentation of pelvic
organs. However, when automatic segmentation is employed, the
resulting segmentation needs to be verified, before used for dose
calculation. Three main sub-topics can be regarded within this cate-
gory: approaches aiding the segmentation of relevant structures, ap-
proaches enhancing the segmentation outcome by post-processing
and approaches assessing the outcome of the segmentation. All
three subcategories incorporate user interaction with the segmen-
tations, which has been discussed by Ramkumar et al. [RDK∗16].

Within the aiding category, de Geus et al. [dW96] propose an ap-
proach for the detection, modeling and visual stylization of struc-
tures of interest from CT images. Stylization, within the work of de
Geus, is defined as a combination of segmentation and 3D visual-
ization, where the resulting segmentation of the critical structures
conforms to the bounding volume of the real shape. Moreover, as-
sisted contouring can be employed to reduce some of the manual
workload, or adjust the result of automatic segmentations. Zindy et
al. [ZMBL00] propose assisted contouring based on scattered data
interpolation methods. Instead of warping individual contours, a
surface is interpolated through any data point that has already been
placed on contour boundaries. This surface can be iteratively re-
fined by adding points on the CT slices. Additionally, sketch-based
editing tools for segmentation have been proposed by Heckel et
al. [HMTH13], considering image information for extrapolation,
as well as previous and contradictory inputs. Other, more com-
plex approaches, involve the work of Akino et al. [AOM∗14] for
the automatic estimation of tumor motion using segmentation of
cine-MRI, with the detection of feature points. Motion vectors are
calculated and applied to contours, while a potential ITV is calcu-
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lated from the accumulation of GTVs. This involves the incorpora-
tion of motion information from cine-MRI and 4DCT data. Raidou
et al. [RKS∗16] employ a visual analytics approach to improve
classifier design for brain lesion detection using features derived
from diffusion imaging. This semi-automatic approach integrates
the knowledge and skills of specialist users with automatic meth-
ods for smart feature selection and for the evaluation of the classi-
fication outcome.

Within the enhancement category, smoothing algorithms can be
considered. Smoothing algorithms allow to reduce artifacts from
mesh generation, but often degrade accuracy. Relevant features
may be removed and distances between adjacent structures get
changed. Li et al. [LHL∗10] present fast 3D-reconstruction and vi-
sualization of tumor target and organs at risk from a series of cross-
sectioned contour points. In this approach, after the pre-processing
of the contour points dataset, an iso-surface is extracted and simpli-
fied. Then, the surface model undergoes a linear transformation and
smoothing. The proposed approach, despite being simple, is accu-
rate and fast and the visualization part consists of simple iso-surface
renderings of the involved organ structures. Moench et al. [MAP10]
present a modification to common mesh smoothing algorithms to
preserve non-artifact features by focusing on previously identified
staircase artifacts. To further improve the handling of mesh smooth-
ing filters, Moench et al. [MLK∗13] introduce model quality graphs
and model quality bars which are evaluated in real-time and pre-
sented to the user to perform parameter adjustments and to provide
immediate visual feedback on accuracy and smoothness.

Within the assessment category, Raidou et al. [RMB∗16] pro-
pose a visual tool to facilitate the exploration and analysis of the
outcomes and errors of automatic segmentation methods, support-
ing cohort and individual patient investigation for the detailed as-
sessment of their pelvic organ segmentations. This work has been
extended later on by Reiter et al. [RBGR18], in a web-based vi-
sual analytics approach to facilitate understanding how the shape
and size of pelvic organs affect the accuracy of automatic segmen-
tation methods and to enable quick identification of segmentation
errors and their correlation to anatomical features. Schlachter et
al. [SFA∗17] develop a visualization framework for rapid quality
assessment of segmentation targeting temporal data. The frame-
work allows for fusion of 4D multi-modal data sets and joint vi-
sualization of segmentation data. The focus of the approach was to
allow exploration of the full 4D imaging information, and to of-
fer interaction and navigation features for a simplification of this
process. This approach is presented in Figure 10.

3.3.4. Multi-Parametric Data Exploration and Analysis

Often, the acquired multi-parametric, multi-modal medical imag-
ing data need to be explored and analyzed, in order to derive addi-
tional (biological) information. Two major trends were observed in
the previous work of this topic. The first relates to the exploration
and analysis of imaging-derived features and the second to tissue
characterization or classification.

Exploration and Analysis of Imaging-Derived Features—Two
early works, with a particular focus on the segmentation and vi-
sualization of MRI perfusion data, have been proposed by Coto
et al. [CGB∗05] and Hennemuth [HBK∗07]. Coto et al. propose

an application that combines advanced interaction, segmentation
and visualization techniques to explore breast Dynamic Contrast
Enhanced (DCE)-MRI data, using well-established interaction and
rendering techniques. The second work tackles myocardial data,
and, thus, also motion correction. A comprehensive workflow of
registration, segmentation and visualization for the exploration of
enhancement curves and parameter distributions in automatically
segmented or user-selected areas is discussed.

Oeltze et al. [ODH∗07] propose a visual analysis tool that en-
ables the exploration of the correlations and relations between sev-
eral features and parameters of perfusion data. From contrast-agent
enhancement time-intensity curves (TICs), they derive per-voxel
parameters that can be used as indicators in the diagnosis of breast
tumors. They employ Principle Component Analysis (PCA) to re-
duce the dimensionality of their parameter space, and they use mul-
tiple linked views to enable exploration and analysis. This work
facilitates the localization of specific characteristics of the param-
eter space in the anatomic and temporal domain. It also enables
a multi-variate analysis of the parameter space and facilitates the
local exploration of the data. A survey of perfusion data analysis
approaches has been published by Preim et al. [POM∗09]. This
survey includes applications on breast tumor analysis, and also on
the analysis of myocardial, and ischemic data.

An additional layer of complexity to the exploration and analysis
of perfusion data has been added by Nguyen et al. [NBYR12] and
Raidou et al. [RvdHvH∗14]. For the exploration, analysis and min-
imization of uncertainty, in the form of intra- and inter-modeling-
induced variability, Nguyen et al. propose an approach that works
with kinetic PET modeling parameters. To show additional rela-
tions between DCE-MRI kinetic modeling-derived parameters and
the effect of variability on these, Raidou et al. propose iCoCooN.
It is a Visual Analytics tool based on the design of a visual repre-
sentation that integrates perpendicularly Parallel Coordinate Plots
(PCPs) with Cobweb Charts (CCs or star plots). PCPs display the
variations in all parameters among modeling choices, while CCs
present the relations in a whole parameter set for each modeling
choice. The tool is equipped with interactive features to support
the exploration of all data aspects in a single combined view. Ad-
ditionally, interactive brushing facilitates to link the observations
bi-directionally to the anatomy.

Tissue Characterization—Beyond the exploration and analysis of
the data, there is a significant amount of work on linking the ana-
lyzed data to tissue characteristics and other information, such as
Gleason or PI-RADS scores [Was15]. For many years, tumors have
been considered homogeneous masses. In reality, tumors are het-
erogeneous tissues, enclosing multiple regions with distinct charac-
teristics, e.g., necrotic portions without perfusion and highly vascu-
larized regions. Incorporating patient-specific intra-tumor tissue in-
formation into radiotherapy planning is potentially important in tu-
mor diagnosis and in designing more effective treatment strategies,
where distinct intra-tumor tissues are irradiated with adequately se-
lected radiation doses [GBM∗12,GMK∗10]. Investigation of tumor
heterogeneity at micro-scale supports the general understanding of
the distribution and type of tumor cells in tissue, and is today done
using data acquired from invasive procedures, including biopsies
and post-operative inspection of histopathological slices. These are
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Figure 10: Example visualizations of 4D multi-modal data sets and segmentation data for quality assessment of ITVs in lung cancer
treatment planning. The focus of the approach was to allow exploration of the full 4D imaging information, and to offer interaction and
navigation features for a simplification of this process. Figure adapted from Schlachter et al. [SFA∗17]).

tumor or tissue sections, which have been frozen or fixated chemi-
cally. The slides are stained with pigments in order to reveal cel-
lular consistency and to increase contrast, and are observed un-
der the microscope. Motivated by the currently tedious process of
discovery and interpretation of findings in histopathological slides,
Corvo et al. [CvW17, CWvv18] proposed recently two approaches
for the support and improvement of the diagnostic procedure and
reporting. These approaches are quite distinct from the others in
the remainder of this subsection, as they analyze high-resolution
histopathological images.

For a non-invasive in-vivo identification and exploration of intra-
tumor tissues, clinical researchers need to associate histopatho-
logical findings, such as Gleason scores [EEA∗16] or PI-RADS
scores [Was15] with features derived from co-registered imaging
data. The exploration and analysis of the characteristics of dis-
tinct intra-tumor regions is a challenging subject, relating to new
research directions for treatment planning [TOG06]. Within this
topic, researchers evaluate and assess supplementary clinical data
that are often used as reference or as a means of diagnosis and
outcome prediction [GMK∗10]. These clinical reference data may
be, for instance, data from risk prediction models [GBM∗12]. Fur-
thermore, the exploration of tumor tissue characterization could be
of particular interest for researchers developing classification algo-
rithms, to aid the design of classifiers that can differentiate between
distinct tissue types, as well as to understand the behavior of such
classifiers.

In vivo, intra-tumor tissue heterogeneity can be visualized only
at mesoscale employing molecular and functional imaging. For RT
planning these imaging data can be used to aid the definition of
the Biological Target Volume (BTV) [LHL∗00] aiming at integrat-
ing tumor heterogeneity as an additional factor for biologically tar-
geted dose distributions [Ben08]. Nunes et al. [NRS∗14] describe
an integrated, flexible visual analytics framework for BTV defini-
tion enabling multi-modal fusion of MRSI data with PET and MRI
data to gain insight into patient specific tumor heterogeneity. With
the proposed system, the user can interactively fuse, analyze, visu-
alize and explore high dimensional patient specific metabolic tissue

signatures from MRSI data in the spatial context of other available
imaging modalities to refine BTV contours in a fast and efficient
way.

Feleppa et al. [FKK∗01] propose an approach for conducting tis-
sue characterization, i.e., pixel-wise likelihood, for prostate can-
cer based on spectrum analysis of ultrasound B-mode data. Fang
et al. [FMHC07], instead, build upon the concept of time activ-
ity curves to propose three methods to analyze and visualize time-
varying data through the creation of adequate transfer functions. In
these three methods, the user can build a 1D or 2D histogram, or a
2D scatter-plot with integrated multi-dimensional scaling to create
transfer functions that reflect different tissue activities, i.e., distinct
tissue characteristics in PET, SPECT and fMRI data. Intra-tumor
classification has been discussed by Glasser et al. [GPTP10] for
the division of a tumor into regions with distinct DCE-MRI perfu-
sion characteristics, by employing a region merging method, which
is summarized in a glyph-based representation for a fast overview
of the whole breast tumor.

The work of Raidou et al. [RMvE∗14,RvD∗15] enables not only
the identification of intra-tumor regions, but also the additional ex-
ploration and analysis of large multi-parametric cancer imaging
data. The identification of anatomically significant intra-tumor re-
gions with distinct tissue characteristics is supported by the use of a
dimensionality reduction technique (t-distributed Stochastic Neigh-
borhood Embedding [VH08]). Moreover, these regions can be indi-
vidually and comparatively analyzed, to gain further insight into tu-
mor heterogeneity [TOG06], at both tumor and voxel level in lung,
prostate, and cervix tumors. The particular characteristic is that the
analysis can be done with respect to reference data used in clinical
research, e.g., features derived from histopathological data or mod-
eled data, while uncertainty (in the form of accuracy or variability)
is also incorporated in the analysis [RvD∗15]. The approach is pre-
sented in Figure 11.

⇒With regard to the approaches related to target and OAR defi-
nition, there are several interesting trends. Most of the work has
been conducted in the domain of data segmentation and of multi-
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(a) (b) (c)

Figure 11: A visual analytics approach to study tumor tissue characteristics. It comprises three main parts: (a) views for the anatomical
analysis of tumor tissue characteristics, (b) a t-SNE embedding view, abstracting the high dimensional space of tissue features in a simple
2D scatterplot and (c) a cluster analysis view for the analysis of the high dimensional space of tissue features of user-selected visual clusters
in the t-SNE representation [RvD∗15].

parametric data exploration and analysis. However, both domains
have mainly investigated approaches which did not manage to be
fully integrated into the clinical routine, and remain developmental.
This could be because still clinical routine heavily relies on man-
ual delineations of the target volumes and OARs, despite the sig-
nificant advancements of (semi-)automatic segmentation methods.
Also, multi-parametric data exploration and analysis, in particu-
lar tumor tissue characterization, has only recently started being
incorporated in clinical setups. Given the attention that such ap-
proaches have recently received both within RT and VC research,
we anticipate more work in this domain in the future.

3.4. Treatment Plan Design and Dose Calculation

The design of the treatment plan and the dose calculation are per-
formed in dedicated treatment planning software. This software op-
timizes for an accurate assessment of the dose distribution. To this
end, they are often based on Monte Carlo simulations. The input
to these simulations is patient-specific information, such as CT im-
ages of the patient, and structure definitions (targets and OARs), as
well as (device dependent) beam geometry properties. The output
of such simulations is the dose plan, as discussed in Section 2.2.
An overview of dose calculation for EBRT can be found by Ah-
nesjö and Aspradakis [AA99].

A proposed multi-modal radiation treatment system is MIN-
ERVA by Wemple et al. [WWN∗04]. This system can be used for
analyzing several imaging modalities, accommodating multi-modal
treatment planning. Liu et al. [LXX∗06] incorporate a neural net-
work algorithm for tissue density calibration used in the calcula-
tion. For the visualization, simple 2D or 3D contour map views are
employed. Other automatized approaches for the optimization of
the dose distribution have been proposed, for example by Alber and

Meedt [AM06], where an assessment of optimal dose distributions
generated by different beam arrangements is performed in a visual-
ization tool. A combined Monte Carlo-based dose calculation and
visualization system has been developed Kimura et al. [KYA∗10]
in order to make a validation or a comparison of results between a
Monte Carlo simulation and an analytical simulation such as radio-
therapy treatment planning system. The visualization system deals
with displaying detector geometry, particle trajectories to simulta-
neously display the patient data and dose distributions calculated
by the simulation.

Pfeiffer et al. have implemented real-time dose calculation and
visualization for ocular tumors [PB01], which resolves the com-
mon separation between parameter definition, dose calculation and
evaluation. It allows a direct examination of the expected dose
distribution while adjusting the treatment parameters. The result-
ing dose distribution is visualized as a 3D surface model on any
2D slice or on the surface of specified ocular structures. Flexible
and patient-specific treatment planning software with Monte Carlo
dose calculations suitable for large-scale prospective and retrospec-
tive treatment planning studies has been designed by Alexander et
al. [ADS∗07]. Treatment planning information, such as patient im-
ages, structures, beam geometry properties and dose distributions,
are used as inputs to the software, while 2D and 3D visualiza-
tion views for images, structure contours, and dose distributions
are provided. Other standard tools, such as for contouring tools,
for DVH analysis, or for dose matrix comparison tools are incor-
porated. An interaction-driven approach is presented by Schlaefer
et al. [SVMF13], where basic primitive elements are employed to
introduce new user-determined constraints for the recalculation of
the dose in 3D.

Mori et al. [MC08] present a quantification and visualization tool
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to permit the identification of beam angles that show range uncer-
tainties quantitatively during respiration. It is useful for a quick as-
sessment of uncertainties in lung cancer patients. For the evaluation
of the impact of metal artifacts on dose calculation accuracy, An-
dersson et al. [ADR∗18] compare two commercial CT metal arti-
fact reduction algorithms for use in treatment planning in head and
neck patients. A human-like phantom with removable metallic im-
plants was employed to evaluate two algorithms used in treatment
planning, showing that the two algorithms improve image quality
in dose calculation.

⇒Treatment plan design and dose calculation approaches have not
been intensively investigated in the joint VC/RT research. At the
same time, the only approach that has been integrated into clinical
practice is MINERVA by Wemple et al. [WWN∗04], which incor-
porates a simple—yet, robust—2D-based strategy, as discussed be-
fore. A potential reason for that could be that the plan design and
dose calculation is more often posed as an optimization problem
and rarely as a VC-related topic. However, the increasing complex-
ity and granularity of current dose planning outcomes is expected
to trigger changes within this domain.

3.5. Dose Plan Review and Treatment Evaluation

In this category, we focus first on the spatial evaluation of the dose
plan, i.e., the assessment of the planned dose distribution for even-
tual changes, and then, on the non-spatial evaluation of the treat-
ment with respect to actual tumor control and potential complica-
tions, which involves topics such as DVH analysis, interfractional
changes and radiobiological (TCP and NTCP) modeling. Qual-
ity assurance today still lacks of formalized standards and may
vary from institution to institution. A survey analyzing the insti-
tutional differences for planar IMRT quality assurance is presented
by Nelms and Simon [NS07].

3.5.1. Spatial Evaluation

The previously proposed approaches for the visual representation
of planning results and for the facilitation of plan reviewing are
classified into three main categories. Conventionally, 2D visual
representations of the planned dose distributions have been used,
which evolved into or are combined with 3D volume renderings.
Additionally, VR/AR and holographic approaches have been pro-
posed. Finally, we discuss simulation approaches of the delivery
step, which can complement the plan evaluation.

2D/3D Approaches—Hahn et al. [HST87] first proposed 2D color
encoded visualization as an aid to the comparison of treatment
plans, taking advantage of the conventional cross-sectional repre-
sentations of the patient contour and selected anatomical features.
For the interpretation of the correlation between dose, target and
OARs, and the comparison of several plans, the authors propose
the so-called images of regret, where color is employed to denote
limits of acceptability, i.e., areas in which the required dose levels
are not satisfied.

Initial approaches on volume rendering in radiation treatment
planning have been proposed already in the 90s, with the work
of Levoy et al. [LFP∗90], Miyazawa et al. [MYKO91] and Inter-
rante et al. [IFP95, IFP96, IFP97]. Levoy et al. discuss approaches

that employ region boundary surfaces for the anatomy, polygo-
nal meshes for the treatment beams, and isovalue contour sur-
faces for the dose distribution, enhanced by shading, texturing, fog-
ging and shadowing. Miyazawa et al. propose a 3D visualization
system for use in radiotherapy planning simultaneously visualiz-
ing original 3D image data, segmentation, and isodose surfaces.
Later, Interrante et al. tackled the issue of showing isodose surfaces
and anatomical surfaces together—a typical multi-modal visual-
ization problem. Semi-transparent isodose surfaces were the base-
line method. They later enhance transparency with ridge and val-
ley lines for better perception of the shape and depth of structures,
such as the skin [IFP95], employ artist-inspired curvature-directed
strokes, for the same purpose [IFP96], and investigate texturing
of layered surfaces [IFP97]. Alakuijala et al. [ALH97] present the
Beam’s light view, a texture mapping method to be used together
with traditional 3D radiotherapy renderings from the beam’s eye
view and room’s eye view. The utility of volume rendering as an
alternative visualization technique to surface rendering for head
and neck radiotherapy planning has also been discussed by Lee et
al. [LJP∗99]

Gambarini et al. [GDF∗00] present a new toolkit for full volu-
metric shape and shape-transforming information from multi image
sequences of absorbed dose, measured in tissue-equivalent phan-
toms. The visualization of the different isodose levels on the phan-
tom data are rendered in 3D using a standard marching cubes al-
gorithm. Multi-modal volume visualization is also described by Si-
bomana et al. [SDB∗02], where Volumes of Interest (VoIs) are
extracted, registered, resliced and visualized for a head and neck
application. The method of Kaiser et al. [KMK∗04] targets the
virtual simulation of a boost field in adjuvant radiotherapy of the
breast and the visualization of dose distributions thereof, while Lam
et al. [LCS∗13] conduct an evaluation of a multi-scale texture an-
alytic procedure for the detection of abnormalities and lesions in
CT images of the pelvis, which is based on a visualization platform
for the representation of treatment planning, CT image-guided po-
sitioning and treatment delivery.

Recently, Fonseca et al. [FC16] propose SOFT-RT, a Software
for IMRT simulations, which produces a 3D rendering of a set
of patient images, including the tumor target definitions and the
OARs, as well as the features and orientation of the radiation
beams. The rendered outcomes represent the tissues exposed to
radiation, as well as the amount of absorbed dose in the tumors
and the healthy tissues. Abdo-Man [GCC∗16] involves a pipeline
(imaging, organ definition, 3D mesh generation, 3D printing) for
the production of a 3D printed anthropomorphic phantom that can
be used as a validation tool for dosimetry.

For risk and/or uncertainty assessment, several methods have
also been presented. Brodin et al. [BMA∗14] discuss an interac-
tive decision-support tool for individualized risk-based radiation
therapy plan comparison. The tool displays dose-response relation-
ships and other features related to normal tissue side effects, and it
is meant for facilitating the optimization of a treatment plan, based
on the aforementioned information, using a combination of dose-
response curves and 2D views of the dose distribution on the pa-
tient anatomy. Zhang et al. [ZMN15] introduce a risk visualiza-
tion method, based on clinical risk guidelines. The risk distribu-
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tions are summarized in 2D visual representations on the patient
anatomy, and provide a means for the visualization and assessment
of the risks of secondary cancer in tissues of the human body. For
the comparison and decision-making about an optimal plan among
several alternatives, Gopal et al. [GS02] and Silva et al. [SRV16]
discuss different approaches. In the work of Gopal et al., treatment
plans are represented as points in a multidimensional space called
plan space, where given specific selection criteria and clinical con-
siderations, the user can obtain the best plan available tailored to the
unique anatomy of each patient. Silva et al. propose an approach for
the visualization of variability in treatment plans, in order to inter-
actively explore and analyze an ensemble of possible dose plans.
This work allows to analyze the dose plan at two different levels:
first, based on the isodoses, i.e., the radiotherapy dose iso-contours,
across the alternative dose plans, and, secondly, directly at a voxel
level. The visualization is based on the concept of contour box-
plots [WMK13] and on multiple, interactive linked views.

VR / AR / Holographic Approaches—Virtual Reality (VR) ap-
proaches for RT include the work of Su et al. [SSJ∗05], which
proposes the use of VR in RT treatment planning, integrated with
computer graphics techniques for the reconstruction of the treat-
ment room and the collimator, and image reconstruction techniques
from CT for the patient body. The authors discuss how the system
can be expected to reduce preparation time and can be employed in
RT training, paving the way for other works, such as the work of
Patel et al. [PMM∗07] and Boejen et al. [BG11]. Patel et al. present
a VR solution for the evaluation of radiotherapy plans, with a focus
on understanding spatial relationships in the patient anatomy and
on illustrating the calculated dose distribution. Similarly, Boejen
et al. propose an immersive visualization in a 3D perspective sys-
tem for planning and delivery of external radiotherapy, targeting
in particular the understanding of spatial relationships in the pa-
tient anatomy. Boejen et al. focus more on the training purposes of
such a VR system. A comparison between VR and conventional
systems for RT dose planning has been conducted by Glaser et
al. [GWP∗12], showing that the VR system requires more time,
but yields higher accuracy, while potentially increasing clinical ef-
ficiency. Also, Ward et al. [WPB∗11] proposed an immersive vir-
tual environment—VERT—that simulates a radiotherapy treatment
room to provide staff and students with training aids for treatment
of virtual patients.

Augmented Reality (AR) approaches in RT include applications
for the evaluation of the plans and also for patient education. In
the former category, the work of Wang et al. [WLF09a] targets the
evaluation of radiotherapy plans, by displaying CT images, dose
distribution, and mesh models of radiotherapy targets and by pro-
viding calculated feedback on acceptance or rejection of the plan
on an individual patient basis. Also, Chu et al. [CGC∗09] propose a
comparable approach, but on a holographic display. This approach
targets the comparison of multiple plans for each patient based on a
hologram and was evaluated in a multi-institutional study, showing
that a holographic display is preferred for treatment planning than
2D displays. In the second category, RAD-AR [CJV17] is an AR
tool for radiotherapy, in order to present the real RT world scene
and to demonstrate the RT procedure to patients, i.e., serving as a
patient education means.

Simulation of Delivery—The delivery itself is considered out of
the scope of this review. Yet, certain aspects which are important
for plan adaptation will be discussed in Section 3.6. Simulation
of the delivery, though, can be part of the planning and might be
of interest for VC. An attempt to unify the simulation, planning,
treatment and verification phases has been proposed by Moore et
al. [MGMS97], which gives clinicians access to a single, animated
environment, designed to objectively model the complex 3D irradi-
ation of cancer patients. Cai et al. [CWKS00] propose a similar sys-
tem with an additional collaborative component so that physicians
distributed at different locations can work together via network to
plan or to validate the plan. A 3D Simulator for EBRT has been
developed by Karangelis et al. [KZBS01] with volume visualiza-
tion of patient images, beam geometry visualization and room view,
where the model of the simulator room is reconstructed using sur-
face rendering techniques. A real-time simulation and visualization
framework that models a deformable surface lung model with tu-
mor has been presented by Santhanam et al. [SWS∗08]. They sim-
ulate the tumor motion and predict the amount of radiation doses
that would be deposited in the moving lung tumor during delivery.

3.5.2. Non-Spatial Evaluation

With regard to non-spatial evaluation, three major topics have been
discussed in previous work. First of all, there are DVH-related ap-
proaches. Then, there are approaches that discuss the analysis of
shape and features of tumors, or of affected organs. Finally, other
approaches discuss radiobiological modeling, i.e., are related to the
analysis of TCP and NTCP modeling, as discussed in Section 2.

Approaches Related to DVH Analysis—DVHs can be explored
as a supplementary and summarized source of information, where
no spatial inferences can be made due to the aggregation and rep-
resentation of the dose against the volume in a graphical 2D plot.
However, DVHs are good for the comparison of multiple cases, ei-
ther alternatives for one patient or for cohort exploration. Maleike
et al. [MUO06] propose the simulation and visualization of dose
uncertainties due to interfractional organ motion. They simulate
stochastic properties of the dose distribution to display probabili-
ties of individual voxels which receive doses above critical levels,
as well as a diagram that shows the variability of the DVH.

For the visualization of setup errors, i.e., errors with respect to
the patient position during treatment, Samanta et al. [SBR∗17] pro-
pose DVH bands. The impact of setup errors onto the DVH is visu-
alized by introducing random errors and calculate a series of DVHs
for each structure, which may help to select the plan with lower
influence of setup errors over another. A similar approach for the
visualization of a variety of possible dosimetric outcomes using
DVH bands is proposed by Trofimov et al. [TUDB12]. Here, the
intensity of the shading in the bands reflects the relative probability
of the outcome.

Mayo et al. [MYE∗17] follow an approach to develop statisti-
cal DVH metrics of previous plans. The current DVH gets visual-
ized on top of the statistical DVHs to quantify the comparison of
treatment plans with historical experience and across institutions.
Alfonso et al. [AHN15] propose a method for assessment and de-
cision making in dose calculation. In this work, a dose-volume his-
togram approach is followed. In particular, data from dose-volume
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histograms provided by treatment planning systems with respect to
target coverage and organ sparing are combined into a dose distri-
bution index (DDI), i.e., an individual score for the comparison of
radiotherapy planning variants.

Approaches Related to Anatomical and Feature Analysis—
Among the anatomical analysis approaches, Oh et al. [OJC14]
propose GLOBE (Geometric reLocation for analyzing anatomical
OBjects Evolution), a technique to quantify and compare anatom-
ical shape, with a proof-of-concept application on cervical cancer.
This work comprises of a number of steps: first, the contour surface
is triangulated to form a mesh, which is subsequently deformed to
a sphere using parametric active contours (PAC). Then, the mag-
nitude of the deformation is sampled on the geodesic dome and,
finally, it is unfolded on a plane. These unfolded planes can be sub-
sequently color-coded to show various parameters, such as the mag-
nitude of the surface normal vector from planning CTV to PTV,
systematic and random variations, or other distributions. In this
way, they allow for easy juxtaposed comparison, either across time
or across patients. Hargrave et al. [HDB∗18] propose an image-
guided decision support framework incorporating a Bayesian net-
work and visualization tool for online cone-beam computed tomog-
raphy (CBCT)-based image-guided radiotherapy for prostate can-
cer patients. The Bayesian network represents the relationships be-
tween pelvic organ volume variations, an image feature alignment
score, delivered dose, treatment plan compliance, intra-fraction
motion, contouring and couch shift errors. The visualization com-
ponent presents a global summary of residual errors after online
CBCT-planning CT registration with Mollweide projections.

Exploration of the anatomical variability of OARs, together with
analysis of potential toxicity risk has been researched by Raidou
et al. [RCA∗18], within the Bladder Runner framework. The work
uses the example of bladder toxicity in prostate cancer analysis, to
present a novel tool for the detailed visual exploration and anal-
ysis of the impact of bladder shape variation on the accuracy of
dose delivery. The Bladder Runner enables the investigation of in-
dividual patients and cohorts through the entire treatment process,
and it can give indications of RT-induced complications for the pa-
tient, allowing clinical researchers to correlate bladder shape vari-
ations to dose deviations and toxicity risk through cohort studies.
The Bladder Runner is presented in Figure 12-(a). Feature-related
approaches include the work of Roy et al. [RCY∗17], who investi-
gate the use of hybrid 18-Flurodeoxyglucose PET/MR imaging for
early visualization of tumor changes during treatment, which can
be employed for adaptation of the treatment. The authors investi-
gate changes in anatomical and functional (DWI and PET) parame-
ters of head and neck tumors, during the initial stages of treatment,
and visualize them in juxtaposed comparison for further analysis.
Stamatakos et al. [SDZ∗02] propose novel Monte Carlo simulation
algorithms that describe tumor growth and response to irradiation,
in combination with 3D visualizations of the predicted outcome.
These algorithms incorporate information of cell division and inter-
action, cell response to irradiation, tumor expansion and shrinkage,
which are visualized in 3D renderings that reflect the response of
the tumor to radiation schemes.

Approaches Related to Radiobiological (TCP/NTCP) Analy-
sis—Conventional TCP models are visualized in simple diagram-

matic plots, depicting curves which quantify the probability that
a tumor is effectively controlled, i.e., treated, given a specific
radiation dose. Recently, new TCP models incorporating func-
tional imaging have been built, improving radiobiological accu-
racy [CvR∗16]. However, showing the uncertainties propagated
from the respective imaging modality, or illustrating the sensitivity
of the models to a number of parameter assumptions, has also be-
come important. Raidou et al. [RCM∗16] propose a visual tool that
enables clinical researchers to explore their TCP models, by sup-
porting uncertainty and parameter sensitivity exploration, while en-
abling inter-patient response variability analysis. This visual anal-
ysis tool has been later used in a clinical study, to quantify dose
and TCP uncertainty bands when initial cell density is estimated
from MRI-based apparent diffusion coefficient maps of the pa-
tients [CRR∗18]. This approach is presented in Figure 12-(b).

NTCP models are regarded either in the same way of TCP mod-
els, within curve diagrams or in renderings of the affected organs.
Kraeima et al. [KSS∗18] explore the second direction and propose
a method for planning a 3D virtual guided resection and recon-
struction of the mandible in osteoradionecrosis. The method en-
ables a 3D rendering of all isodose fields in relation to the model
of the mandibular bone. Other approaches include the work of El
Naqa et al. [ENBD08], on methods for the visualization of the high-
dimensional space composed of the interaction between toxicities
and treatment, anatomical, and patient-related variables of NTCP
in head and neck patients. To this end, they employ an approach
based on PCA and support vector machine (SVM), where predic-
tion can be performed based on resampling within logistic regres-
sion to find the balance between dosimetric indicators and other pa-
tient variables. The visualization consists of a combination of static
plots, such as surface plots and histograms, to aid decision mak-
ing. Kupchak et al. [KBVD08] present a novel method for mapping
NTCPs onto dose-volumetric regions that incorporate statistical in-
formation of risk. The method is based on a Monte Carlo algorithm
that creates a large set of DVH curves by simulating random walks
through the dose-volume space, guided by a base set of clinical
DVHs. A scoring of the dose-volume points is performed, where
an NTCP tolerance value is selected and the risk of complications
is visualized in a gray-scale map in regions of dose-volume space.

A comprehensive method to visualize the uncertainty in pre-
dicted TCP and NTCP models has been proposed by Zhang et
al. [ZHT∗13]. Inter-individual variation of the underlying radiosen-
sitivity is simulated and visualized as a scatter-plot superimposed
to the population-based dose response curves. Additionally, prob-
ability histograms quantifying the probability of specific TCP or
NTCP values are derived for individual patients from the underly-
ing population.

⇒ Dose plan review and treatment evaluation approaches com-
prise the most populated category within the taxonomy. This does
not come as a surprise, as RT is heavily concerned with security as-
pects throughout the pipeline, as well as the verification and eval-
uation of the plan prior to administration. Within this category, we
encounter also most of the integrable applications—in particular,
within the spatial evaluation subgroup. It is of particular inter-
est that chronologically older works [HST87, LFP∗90, MYKO91,
IFP95, IFP96, IFP97] that were mainly concerned with 2D repre-
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(b2)
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Figure 12: (a) The Bladder Runner [RCA∗18], proposed for the
analysis of potential RT-induced genito-urinary toxicity risk, with
respect to day-to-day exploration of bladder shape variations in a
cohort of prostate cancer patients. (b) The approach proposed by
Raidou et al. [RCM∗16] for the exploration and analysis of Tumor
Control Probability (TCP) modeling in prostate cancer patients.
(b1) shows the incorporation of ADC-induced uncertainty and pa-
rameter sensitivity into the analysis and (b2) shows an inverse ap-
proach used for retrospective evaluation.

sentations are well-established in clinical routine, while newer 3D
approaches [GDF∗00, LCS∗13, FC16, GCC∗16] have remained at
a developmental stage. A lot of VR/AR approaches are also, at least
partially, integrable—the most important example being the work
of Ward et al. [WPB∗11]. Approaches incorporating anatomical
feature analysis and work in regard to radiobiological modeling is
also at a developmental stage, as anatomical feature analysis and
radiobiological modeling are still under clinical evaluation in RT
research.

3.6. Planning Strategies for Image-Guided Adaptive RT

In this category, we introduce adaptive approaches which try to op-
timize the treatment either by re-planning or by modification dur-

ing the delivery. During the course of radiotherapy, both the tumor
and the healthy surrounding organs are variable in size and posi-
tion. This can be attributed to anatomical changes between frac-
tions (inter-fraction) or to changes during beam delivery within one
treatment fraction (intra-fraction). The former can happen, e.g., in
patients with a tumor in the pelvic area, where the position is depen-
dent on bladder and bowel filling, but changes can also occur due to
weight loss and tumor shrinkage [KWCM13]. The latter can hap-
pen, e.g., in patients with lung cancer where the tumor moves with
breathing. As the anatomy and geometry of a patient is based on
medical images acquired at previous stages of the planning work-
flow, it might not be anymore well-reflected at the time of delivery.
More details about IGART in general can be found in Yan [Yan06].
One way to compensate for these uncertainties is by including
them into the PTV (or ITV) with appropriate safety margins as ex-
plained in the previous sections. Otherwise, Image-Guided Adap-
tive RT (IGART) tries to optimize dose delivery by taking into ac-
count intra- and inter-fractional image data. Current LINACs are
equipped with on onboard imaging which can be used for IGART.
For instance, CBCT imaging has become an integral part of radia-
tion therapy, with images typically used for offline or online patient
setup corrections based on bony anatomy co-registration with the
planning CT. For some purposes, the image quality of CBCTs can
be insufficient, and the use of contrast-enhanced CBCT imaging for
adaptive radiotherapy has been proposed by Soevik et al. [SRS∗10].

Approaches Related to Inter-Fraction— To change the plan or to
re-plan according to the recent state of anatomy every time, would
be too time-consuming. An alternative is to keep the original plan,
but recompute the accumulated dose based on the current state of
anatomy. If the deviation between the accumulated dose deviates
too much compared to the planned dose, re-planning might be a
better option. The calculation of the true dose distribution for a
patient requires accurate DIR to reduce dose warping uncertain-
ties due to the registration algorithm [VLM∗15]. Registration for
IGART has different problems as there are regions within the im-
ages to be registered, where explicit correspondences cannot be es-
tablished [KZD∗09] for the reasons mentioned above. The work
of Song et al. [SSB∗05] evaluates the efficacy of various image-
guided adaptive radiation therapy techniques to deliver and esca-
late dose to the prostate. Furthermore, the normal tissue sparing
potential of adaptive strategies in radiotherapy of bladder cancer
has been shown by Wright et al. [WRH∗08]. Open source software
suites, such as DIRART [YBEN∗11] or SlicerRT [PLW∗12] target-
ing multiple aspects of IGART including registration and visualiza-
tion, are freely available. A multi-modality image registration and
visualization framework, which is addressing the transfer of struc-
tures of RT plans onto follow-up images for re-planning, has been
presented by Wang et al. [WLF09b]. An alternative to dose warp-
ing is Cherenkov imaging, which can estimate the dose in real time
2D [JZG∗14] and 3D [BAG∗17].

Approaches Related to Intra-Fraction—For lung cancer patients,
it is more important to monitor the tumor position during the frac-
tion, ensuring a good setup, as well as monitoring of the breathing
motion range. Tumor tracking algorithms that are able to follow the
lung tumor based on a combination of in-beam imaging and kilo-
voltage (kV) imaging have been developed. Furtado et al. [FSS∗13]
implement a real-time tumor motion tracking by 2D/3D registra-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



M. Schlachter & R.G. Raidou & L.P. Muren & B. Preim & P.M. Putora & K. Bühler / STAR: Visual Computing in Radiation Therapy Planning

tion using on-board kV imaging which allows for a reduction of the
PTV and therefore healthy tissue sparing. Chang et al. [CCT∗14]
propose an approach that integrates real-time ultrasound (US) for
the visualization of the target, which is registered to CT images.

Non-Image-Guided Approaches for Intra-Fraction Monitor-
ing—Alternative non-image-guided tracking approaches exist for
monitoring of the position of the patient during treatment in
RT. Depth sensor-based real-time tumor tracking by Nutti et al.
[NKN∗14], or tracking with an implantable wired electromagnetic
transponder by Ravkilde et al. [RKH∗11] are examples of such ap-
proaches. A combination of 2D electronic portal images and 3D
optical surface sensors is also possible and can be found in the work
of Riefenstahl et al. [RKC∗01].

⇒ Image-guided adaptive RT is a relatively new concept which has
not yet been fully established in clinical practice. Therefore, most
of the approaches in joint VC/RT research are also still under in-
vestigation. However, some approaches are already integrated into
the routine—especially, those related to inter-fraction [KZD∗09,
WRH∗08, WLF09b].

3.7. Evaluation of VC Applications in RT

All reviewed papers conducted some form of evaluation. Table 2
summarizes the evaluation alternatives followed in the reviewed pa-
pers. For the evaluation of the previously discussed VC approaches,
we noticed three main trends. Half of the previous work provides
quantitative results to back their statements (Quantitative Results:
55/105 papers, 52%), followed by papers which reported only qual-
itative results, by either presenting visualization examples, case and
use studies, usage scenarios, or summarized expert feedback (Qual-
itative Results: 43/105 papers, 41%). The remainder of the papers
falls in between categories, where combinations of the above have

Table 2: Summary of whether and how authors of the papers in-
cluded in this survey evaluated their approaches. We make a dis-
tinction among quantitative results, quantitative user evaluations
or qualitative results (use cases, case studies, example images).

Quantit.
Results

Quantit.
User Eval.

Qualit.
Results

| | |
X 7 X [AOM∗14] [ADS∗07] [AHN15] [ADR∗18] [BMA∗14] [BAG∗17]

[CWKS00] [CRR∗18] [CCT∗14] [CT14] [CGC∗09] [CJV17]
[CLS06] [EWR∗08] [FKK∗01] [FSS∗13] [GDF∗00] [GCC∗16]
[GEH∗02] [GWP∗12] [GS02] [GPN∗01] [HBR∗17] [HDB∗18]
[HBK∗07] [IFP95] [IFP96] [IFP97] [KMK∗04] [KZBS01]
[KZD∗09] [KCEF07] [KBVD08] [LCS∗13] [LXN∗05] [LHL∗10]
[MK11] [MYE∗17] [MAP10] [MGMS97] [ENBD08] [NKN∗14]
[OJC14] [PM06] [RKS∗16] [RKH∗11] [RCY∗17] [SBR∗17]
[SVMF13] [SKH∗08] [SDZ∗02] [TUDB12] [WLF09a] [WRH∗08]
[ZHT∗13]

X X X [SFJ∗16] [SFA∗17]
7 X X [MGLS∗16] [RvD∗15] [WPB∗11]
X 7 X [GPTP10][HMTH13]
7 7 X [ALH97] [AM06] [BG11] [CK09] [CvW17] [CWvv18] [CGB∗05]

[FMHC07] [FC16] [dW96] [HST87] [JZG∗14] [KYA∗10] [KSS∗18]
[LJP∗99] [LFP∗90] [LXX∗06] [MUO06] [MYKO91] [MLK∗13]
[MC08] [NBYR12] [NRS∗14] [ODH∗07] [PMM∗07] [PB01]
[PLW∗12] [RMvE∗14] [RvdHvH∗14] [RCM∗16] [RMB∗16]
[RCA∗18] [RBGR18] [RKC∗01] [SWS∗08] [SDB∗02] [SRV16]
[SSJ∗05] [WLF09b] [WWN∗04] [YBEN∗11] [ZMN15] [ZMBL00]

been employed, together with quantitative user evaluations. No par-
ticular trends or correlations have been detected with respect to the
taxonomy categories and the form of evaluation that has been per-
formed. Also, we did not notice any trend with regard to the time
of publication.

3.8. Identification of Literature Concentration

Figure 8 summarizes the categories, where most of the previous
work in VC for RT is concentrated. The majority has been con-
ducted for developmental purposes (51/105 papers, 49%), i.e., most
of the approaches have not been integrated into clinical practice.
This can be either because they tackle new experimental direc-
tions of clinical research, or because they are proof of concept
approaches whose benefits have not been proven yet for clinical
practice. Previous work falling into the purely integrable catego-
rization are only one fourth of the reviewed papers (27/105, 26%).
The remainder of the work is neither purely integrable nor purely
developmental. Please note that the categorization is based on the
experiences and personal opinions of the authors.

With respect to the workflow steps, most work has been con-
ducted within the field of Dose Plan Review and Treatment Evalu-
ation (46/105 papers, 44%), followed by Target and OAR Definition
(38/105 papers, 36%). Not a lot of work has been conducted in the
Treatment Plan Design and Dose Calculation (9/105 papers, 9%)
and in Image Guided Adaptive RT (12/105 papers, 11%).

Within the respective subcategories of the two previously men-
tioned categories, previous work has mainly focused on Data Seg-
mentation (13/105, 12%), Multi-Parametric Data Exploration and
Analysis (13/105, 12%), Spatial Evaluation (30/105, 29%) and
Non-Spatial Evaluation (16/105, 15%). Among these, 2D/3D Dose
Plan Review Approaches (18/105, 17%) and (Semi-)Automatic Seg-
mentation Solutions (12/105, 11%) are the most commonly encoun-
tered in previous literature. In Target and OAR Definition literature,
most previous work is developmental, while in Dose Plan Review
and Treatment Evaluation, it is integrable. For the other two main
steps, i.e., for Treatment Plan Design and Dose Calculation and
Image Guided Adaptive RT, most work is developmental. Very lit-
tle work has been done in sub-domains, such as integrable work
for Data Registration, Data Fusion and new research fields involv-
ing developmental approaches for Anatomical and Feature Analy-
sis and Radiobiological (TCP/NTCP) Analysis. Also, purely exper-
imental fields of clinical research, such as Multi-Parametric Data
Exploration and Analysis have proposed so far only developmental
approaches.

4. Outlook from the RT Domain

In this section, we present the clinical outlook from the RT do-
main with regard to past lessons, present status and future direc-
tions for VC research in RT treatment. This section underlines the
achievements so far, as well as main challenges and limitations of
VC in RT, as obtained from an informal interview with two clinical
specialists—a medical physicist and a radiation oncologist.

Past Lessons—In the 80s, the use of imaging and VC in RT
changed treatment planning and delivery, tremendously. There has
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been an evolution from 2D treatment to 3D approaches, incorpo-
rating densities of tissues and yielding more granular and more
complex treatment plans. RT is now able to visualize patients in
the 3D space, enabling to know where we are irradiating. Before
that, only a rough, single slice-based way was possible [LFP∗90,
IFP95, IFP96, IFP97] . Additionally, different anatomical densities
are incorporated, and the radiation dose is calculated in a few sec-
onds within the 3D model of a patient [GDF∗00, FC16, GCC∗16].
Finally, RT is efficiently informed about the dose interaction with
distinct tissues. All this had an enormous influence on treatment
planning. Given this evolution, it is difficult to detach VC and, es-
pecially visualization, from RT.

The contribution of VC in the field of RT has allowed the de-
velopment of new, fast and accurate treatment planning calculation
algorithms, and the computerized control of the treatment. This has
brought new possibilities into the treatment, and the ability to mod-
ulate the beam intensity and direction, in order to avoid certain criti-
cal organ tissues [WSVHD08,CLS06,VLM∗15]. Both aspects are
very important to achieve conformal dose distributions with im-
proved target control and sparing of normal tissues, through effi-
cient and optimized inverse planning. Moreover, VC has enabled
the integration of multiple modalities [LSBP18, CT14, NRS∗14,
RvD∗15] . This has facilitated the integration of all different imag-
ing information, increasing precision and insight in what would not
be otherwise seen. Nowadays, 4D conformal and intensive tumor
treatment is possible, while sparing the OARs. Different visualiza-
tions have provided an intuitive understanding of the 3D patient
anatomy, and made patient motion manageable, e.g., due to breath-
ing [EWR∗08].

Experience with joint VC/RT research showed that it is not easy
to introduce new approaches in the clinic [PMM∗07], with the
exception of applications for training and education [WPB∗11,
BG11] . New developmental solutions are often too costly in time,
resources and money—this being the main reason for not having a
clinical impact. All major algorithms that are actually adopted by
clinical practice, need to be supported by large companies—also,
due to certification issues. Therefore, interaction and collaboration
between the clinic, academia and industry is necessary. Addition-
ally, VC researchers should always be aware of the specialist needs,
and aim for a reduction of complexity and improvement of usabil-
ity. The majority of applications that are actually used to treat pa-
tients are simple solutions, and those are the ones that should be im-
proved. Additionally, VC researchers should always keep in mind
the basic processes of the workflow and aim for patient-driven so-
lutions.

Present Status—In clinical practice, most efforts and adopted ap-
plications within RT planning focus on simpler solutions. For ex-
ample, in treatment planning, the most commonly encountered vi-
sualizations are 2D/3D approaches, where the different planes of
the patient are shown, different tissue intensities are visible, addi-
tional information (e.g., from DWI or DCE) are color-coded and
sometimes overlaid, together with dose distributions and contours
of the involved anatomical structures.

On the one hand, more intuitive, and easy to understand repre-
sentations, with a less complex interface design are needed. Human
perception and cognition is currently under-addressed, and a lot of

solutions do not necessarily meet the needs of clinical routine. On
the other hand, current applications are able to tackle individual
patients, focusing only on the visualization of a small number of
images—often, just two. Still, to compare patient cohorts, e.g., in
retrospective or prospective Radiomics studies, where a multitude
of information from all modalities should be analyzed and learned
from, current options are limited. In this case, tools that allow a
comprehensive inspection and exploration of all available patient
data—going beyond single-patient statistical analysis are required
[RvD∗15,RKS∗16,RCA∗18,RBGR18]. Therefore, ways to reduce
the complexity of the data, while also being able to have a “di-
gestible” overview of all of it, are essential.

Future Directions—Future VC-related developments should focus
more on approaches that provide better insight and understanding
of the data, and that can be used clinically without adding unnec-
essary complexity or risks. Additionally, VC/RT research should
strive for a better and seamless integration of systems, focusing on
processes and on patients. Currently, processes within the work-
flow of radiotherapy are regarded as detached parts, supported by
the respective visualizations. Instead, we should aim to obtain an
integration based on patient and process information, where every-
one has access to relevant information supporting the treatment. To
this end, visualizations—and also the components of user interface
and cognition—should be standardized.

Future directions should also revolve around the topic of intu-
itiveness. There are a lot of processes that are not intuitively ob-
vious, especially with the incorporation of concepts from Artifi-
cial Intelligence (AI), such as Deep Learning algorithms [SPG14,
CGM∗17, PHG∗18] . A vast majority of these processes are tack-
led with automatic methods—the results of which, are better or, at
least, not anymore differentiable from a human recommendation.
With increasing complexity, we will soon not be able to understand
the outcome of automatized approaches, and it is of major impor-
tance to have control over this outcome. Yet, tools for assessment
of the automatic algorithms should still be simple and intuitive.

Last but not least, VC/RT research should keep in mind that RT
is a patient-oriented process, and aim to turn developmental solu-
tions into products that can reach many institutions. VC and RT
people need to collaborate more, to see what is possible, to invest
time in new developmental settings and aim for VC/RT collabora-
tions, where we can learn from each other—possibly, at the inter-
face between hospitals, universities and companies. Since patients
and society are the most important stakeholders, the most relevant
aspect of our work is what benefits them: patient-oriented, more
effective treatment.

5. Discussion and Conclusion

Despite the significant achievements of joint VC/RT research, there
are still many issues covering all areas of the workflow, which can
be improved. We found that most of the previous work has been
concentrated in the reviewing phase of the workflow, followed by
the definition of tumors and healthy organs, as discussed in Sec-
tions 3.3 and 3.5.2. This does not come as a surprise, given the
inherent characteristics of RT treatment: it is based on an optimiza-
tion approach, which tries to maximize treatment of tumors, while
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minimizing toxicity on the healthy organs [Was15]. Image-Guided
Adaptive RT is, also as expected, not very prominent yet in VC, as
discussed in Section 3.6. It is quite surprising that from domains,
such as registration, fusion, and multi-parametric imaging, mainly
developmental approaches, e.g., [RvD∗15, SFA∗17, SFJ∗16] have
emerged, as demonstrated in Section 3.8 and in Figure 8. This may
be due to the fact that either these components are not widely em-
ployed in current clinical practice, e.g., multi-parametric imaging,
or that they are complex, not mature enough, or less cost-efficient to
enter clinical practice. As proposed in Section 4, future approaches
should focus on addressing adequately the maturity, complexity
and efficiency of these methods, and assess later whether they can
be beneficial—if integrated into the RT workflow.

Several interesting aspects have been raised and presented in
Section 4. Despite the interesting outcomes of many research
projects, these are not easy to introduce in the clinic [PMM∗07].
Still, for training and education of new specialists, experimen-
tal approaches are more often included and well-accepted [BG11,
WPB∗11].

Moreover, a close collaboration between the clinic, academia
and industry is necessary, to ensure that the newly developed ap-
proaches can be picked up and adopted, later on. The community
should focus even more on simpler—yet, creative—solutions, and
more intuitive, easier to understand and to use approaches. To this
end, the needs of the specialists and of the patients, as well as the
basic processes of the workflow, should always be considered when
developing new VC strategies. Easy, fast, standardized, and cost-
efficient approaches are expected to be the ones that will stay in
clinical practice. Interaction is an important aspect within these ap-
proaches [AvHL∗17].

Another important topic that emerged from the outlook in Sec-
tion 4 is that the two domains of RT and VC still “speak in dif-
ferent languages”. To address this issue, there should be more gen-
eralized efforts for collaboration between VC and RT, where both
domains can learn from each other. This is expected to yield more
developmental settings, which could be further turned into prod-
ucts that would serve many institutions and that would be inte-
grated into the workflow. Two examples of such projects are two
past FP7 European Projects: DR THERAPAT–Digital Radiation
Therapy Patient [DR 13] and SUMMER–Software for the Use of
Multi-Modality images in External Radiotherapy [SUM12].

From the current trends in RT research, we foresee that future
directions will target topics within the domains of personaliza-
tion. Understanding better the specific anatomical and intra-tumor
characteristics of each patient and incorporating these into treat-
ment planning, by selecting the most adequate radiation strategy
for each tumor region, can lead to the design of more effective
treatments [TOG06]. However, in this case, two main issues can
emerge. The first one is the selection of adequate AI methods to
deal with an increasing number of data-derived features. The sec-
ond one is maintaining the ability to understand, assess and reason
with respect to the outcome of such methods. The former topic is
being addressed in current VC research, but in most of the cases,
results cannot be achieved interactively, which is not always opti-
mal and time-efficient. To this end, the field of Progressive Visual
Analytics [SPG14], where partial results of an algorithm can be pro-

duced and interactively analyzed, may be beneficial. Additionally,
as Visual Analytics solutions tend to be complex, target users are
not able to fully exploit their potential. Guided Visual Analytics is a
concept that puts emphasis on the effective use of such systems by
domain experts the domain of Guided Visual Analytics [CGM∗17].
Future research towards these directions would be an interesting
enhancement to current work.

Designing and employing Progressive and Guided Visual An-
alytics solutions can additionally facilitate understanding and de-
liberating about the results of the employed AI-supported meth-
ods [PHG∗18]. With increasing complexity, it will become of major
importance to gain understanding, as well as control over automa-
tized outcomes. From a visualization point-of-view, follow-up and
inter-patient analysis would be challenging, due to the implicated
dimensionality and complexity of the data, and because anatomic
correspondences are not ensured [RBV17]. Smart strategies to ad-
dress these two key-points need to be devised.

Another topic of major importance is the incorporation and ex-
ploration of uncertainties of RT. Although extensive studies have
been conducted with regard to uncertainties, such as errors or in-
accuracies of the imaging acquisition step, other sources of uncer-
tainties remain challenges and open directions for the future. One
of the most important parts of uncertainty in RT is related to the
propagation of uncertainty and its accumulation through the differ-
ent steps, e.g., from imaging to registration, segmentation and to the
final outcome of the worfklow. Uncertainty propagation and accu-
mulation has only been partially addressed [Rai18]. Additionally,
investigating delivery-related uncertainties in the future is antici-
pated to improve significantly the efficiency of the treatment and
the minimization of side-effects.

6. Summary

In this survey, we reviewed the role of VC in the development of
the RT treatment planning domain. We conducted an extensive lit-
erature search, which has built the basis for the taxonomy that we
presented in Section 3. The presented taxonomy systematically cat-
egorizes the previous literature work into approaches that address
a specific step (or sub-step) of the RT treatment workflow, together
with their adoption status (possible to integrate vs. developmental).
For each of the categories that have been determined within the tax-
onomy, we discussed previous joint VC/RT work, with a focus on
the advancement that they offer to the RT field. We discussed also
drawbacks and evaluated them comparatively, within each subcat-
egory. Additionally, the taxonomy facilitated the identification of
topics concentration within existing literature—in particular, sub-
fields that have not been deeply investigated, in the past. We con-
sidered the evaluation to be an integral component of the previ-
ous work, so we comment on whether the discussed approaches
have been evaluated and with which methods. Finally, we gave in-
sight in the past developments, present status and future directions
within the joint research area of VC/RT, in an outlook from the RT
domain. We expect that the field of VC/RT joint research will be-
come even more widespread in the upcoming years, and that closer
collaborations between researchers, both in academia and industry,
and clinical experts will become more and more imminent.
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